10. BIOTECHNOLOGY (Code No. 045)

An unprecedented growth of human knowledge in the field of Biological Sciences coupled with equally significant developments in the field of technology have brought significant changes into existing social and economic systems. The emerging field of Biotechnology is likely to further enhance the applications of Science and Technology in the service of human welfare. Modern Biotechnology processes encompass a wide range of new products such as antibiotics, vaccines, monoclonal antibodies and many more. Furthermore, developments in recombinant DNA technology have yielded numerous new useful products in the fields of healthcare and agriculture. The present syllabus takes care of all these aspects. Due emphasis has been laid on familiarizing the learners with the fundamental concepts, basic techniques and their applications. It is expected that the knowledge gained through the study of different topics and the skills acquired through the prescribed practical work will make the learners competent to meet the challenges of academic as well as professional courses after studying the subject at senior secondary stage.

Objectives
The broad objectives of teaching Biotechnology at senior secondary level are:

- To help the learners know and understand basic facts and concepts of the subject at elementary stage.
- To expose the students to different basic processes and basic techniques used in Biotechnology.
- To familiarize the learners to understand the relationship of the subject to health, nutrition, environment, agriculture and industry, etc.
- To develop conceptual competence in the learners so as to cope up with professional courses in future career.
- To acquaint students with different applications of Biotechnology in everyday life.
- To develop an interest in students to study biotechnology as a discipline.

COURSE STRUCTURE
CLASS - XI (2018-19)

<table>
<thead>
<tr>
<th>Units</th>
<th>No. of Periods</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit-I Biotechnology: An overview</td>
<td>20</td>
<td>5</td>
</tr>
<tr>
<td>Unit-II Molecules of Life</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Unit-III Genetics and Molecular Biology</td>
<td>50</td>
<td>20</td>
</tr>
<tr>
<td>Unit-IV Cells and Organisms</td>
<td>60</td>
<td>25</td>
</tr>
<tr>
<td>Practicals</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
<td>100</td>
</tr>
</tbody>
</table>
Unit-I Biotechnology: An overview
Chapter 1: Biotechnology: An Overview
Historical Perspectives, Technology and Applications of Biotechnology, Global market and Biotech Products, Public Perception of Biotechnology, Biotechnology in India and Global Trends

Unit-II Molecules of Life
Chapter 1: Biomolecules: Building Blocks
Building Blocks of Carbohydrates - Sugars and Their Derivatives, Building Blocks of Proteins - Amino Acids, Building Blocks of Lipids - Simple Fatty Acids, Sphingosine, Glycerol and Cholesterol, Building Blocks of Nucleic Acids - Nucleotides, Biochemical Transformations

Chapter 2: Macromolecules: Structure & Function
Carbohydrates - The Energy Givers, Proteins - The Performers, Enzymes - The Catalysts, Lipids and Biomembranes - The Barriers, Nucleic Acids - The Managers

Unit-III Genetics and Molecular Biology
Chapter 1: Concepts of Genetics
Historical Perspective, Multiple Alleles, Linkage and Crossing Over, Genetic Mapping, Gene Interaction, Sex-Linked Inheritance, Extraneuclear Inheritance, Quantitative Inheritance, Genes at the Population Level

Chapter 2: Genes and Genomes: Structure and Function
Discovery of DNA as Genetic Material, DNA Replication, Fine Structure of the Genes, From Gene to Protein, Transcription – The Basic Process, Genetic Code, Translation, Regulation of Gene Expression, Mutations, DNA Repair, Human Genetic Disorders, Genome Organization

Unit IV: Cells and Organisms
Chapter 1 The Basic Unit of Life
Cell Structure and Components, Tissues and Organs, Stem Cells, Biodiversity, Organization of Life

Chapter 2: Cell Growth and Development
Note: Every student is required to do the following experiments during the academic session.

1. Recording practical results and safety rules in the laboratory
2. Preparation of buffers and pH determination
3. Sterilization techniques
4. Preparation of bacterial growth medium
5. Determination of bacterial growth curve
6. Cell counting
7. Isolation of milk protein (Casein)
8. Estimation of whey protein by biuret method
9. Assaying the enzyme acid phosphate
10. Estimation of blood glucose by enzymatic and glucometer method (GOD/POD)
11. Study of various stages of mitosis and calculation of mitotic index
12. Preparation of karyotype

Scheme of Evaluation

Time: 3 Hours

<table>
<thead>
<tr>
<th>Component</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Two experiments</td>
<td>20</td>
</tr>
<tr>
<td>Viva on experiments</td>
<td>5</td>
</tr>
<tr>
<td>Practical record</td>
<td>5</td>
</tr>
</tbody>
</table>

Max. Marks 30

The scheme of evaluation at the end of session will be as under:
CLASS XII (2018-19)
(THEORY)
COURSE STRUCTURE

One Paper
Max. Marks 70+30
Time: 3 hrs.

<table>
<thead>
<tr>
<th>Units</th>
<th>No. of Periods</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>Unit V Protein and Gene Manipulation</td>
<td>100</td>
<td>40</td>
</tr>
<tr>
<td>Unit VI Cell Culture and Genetic Manipulation</td>
<td>80</td>
<td>30</td>
</tr>
<tr>
<td>Practicals</td>
<td>60</td>
<td>30</td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
<td>100</td>
</tr>
</tbody>
</table>

One paper
Time: 3 hrs.
Total Marks : 70
180 Periods

Unit-V Protein and Gene Manipulation
40 Marks 100 Periods

Chapter-1: Recombinant DNA Technology
Introduction, Tool of rDNA technology, Making rDNA, Introduction of recombinant DNA into host cells, Identification of Recombinants, Polymerase Chain Reaction (PCR), Hybridization Techniques, DNA Library, DNA Sequencing, Site-directed Mutagenesis

Chapter-2: Protein Structure and Engineering
Introduction to the world of proteins, 3-D shape of proteins, Structure-Function Relationship in Proteins, Purification of Proteins, Characterization of Proteins, Protein Based Products, Designing Proteins (Protein Engineering)

Chapter-3: Genomics, Proteomics and Bioinformatics
Introduction, Genome, Sequencing Projects, Gene prediction and counting, Genome Similarity, SNPs and Comparative Genomics, Functional Genomics, Proteomics, History of Bioinformatics, Sequences and nomenclature, Information Sources, Analysis using Bioinformatics tools

Unit-VI Cell Culture and Genetic Manipulation
30 Marks 80 Periods

Chapter-1: Microbial Cell Culture and its Applications
Introduction, Microbial Nutrition and Culture Techniques, Measurement and Kinetics of Microbial Growth, Scale-up of Microbial Process, Isolation of Microbial Products, Strain Isolation and Improvement, Applications of Microbial Culture Technology, Biosafety Issues in Microbial Technology

Chapter -2: Plant Cell Culture and Applications
Introduction, Cell and Tissue Culture Techniques, Applications of Cell and Tissue Culture, Gene Transfer Methods in Plants, Transgenic Plants with Beneficial Traits, Biosafety of Transgenic Plants

Chapter-3: Animal Cell Culture and Applications
Introduction, Animal Cell Culture Techniques, Characterization of Cell lines, Methods of Gene Delivery into Cells, Scale-up of Animal Culture Process, Applications of Animal Cell Culture, Stem Cell Technology, Tissue Engineering

PRACTICALS

Note: Every student will be required to do the following experiments during the academic session.

1. Use of special equipment in biotechnology experiments
2. Isolation of bacterial plasmid DNA
3. Detection of DNA by gel electrophoreses
4. Isolation of Genomic DNA (CTAB method)
5. Estimation of DNA
6. Bacterial transformation using any plasmid
7. Restriction digestion of plasmid DNA & its analysis by gel electrophoresis
8. Isolation of bacteria from curd & staining of bacteria
9. Cell viability assay
10. Data retrieval and data base search using internet site NCBI and download a DNA and protein sequence from internet, analyze it and comment on it
11. Reading of a DNA sequencing gel to arrive at the sequence
12. Project work

Scheme of Evaluation:
Time: 3 Hours

A Two experiments 6+6 (only one computer based practical)
Practical record 04
Viva on Practicals 04

B Project work
Write up 05
Viva on project 05
Total 30

Prescribed Books:
1. A Text Book of Biotechnology - Class XI : Published by CBSE, New Delhi
2. A Laboratory Manual of Biotechnology - Class XI : Published by CBSE, New Delhi
3. A Text Book of Biotechnology - Class XII : Published by CBSE, New Delhi
4. A Laboratory Manual of Biotechnology - Class XII : Published by CBSE, New Delhi
BIO TECHNOLOGY (CODE - 045)
QUESTION PAPER DESIGN
CLASS –XI & XII (2018–19)

Time 3 Hours

Max. Marks: 70

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Typology of Questions</th>
<th>Very Short Answer (VSA) (1 mark)</th>
<th>Short Answer-I (SA-I) (2 marks)</th>
<th>Short Answer-II (SA-II) (3 marks)</th>
<th>Long Answer (L.A.) (5 marks)</th>
<th>Total Marks</th>
<th>% Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>01</td>
<td>Knowledge Based</td>
<td>2</td>
<td>1</td>
<td>2</td>
<td>1</td>
<td>15</td>
<td>22%</td>
</tr>
<tr>
<td>02</td>
<td>Conceptual Understanding (Application and Reasoning based)</td>
<td>3</td>
<td>4</td>
<td>8</td>
<td>1</td>
<td>40</td>
<td>57%</td>
</tr>
<tr>
<td>03</td>
<td>Higher Order Thinking Skills (HOTS)</td>
<td>1</td>
<td>2</td>
<td>--</td>
<td>--</td>
<td>05</td>
<td>07%</td>
</tr>
<tr>
<td>04</td>
<td>Skill Based</td>
<td>--</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>14%</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>6</td>
<td>8</td>
<td>11</td>
<td>3</td>
<td>70</td>
<td>100%</td>
</tr>
</tbody>
</table>

Total No. of questions = 28

1. No chapter wise weightage. Care to be taken to cover all the chapters.
2. The above template is only a sample. Suitable internal variations may be made for generating similar templates keeping the overall weightage to different form of questions and typology of questions same.