MATHEMATICS
(Code No. 041)
Session-2018-19

The Syllabus in the subject of Mathematics has undergone changes from time to time in accordance with growth of the subject and emerging needs of the society. Senior Secondary stage is a launching stage from where the students go either for higher academic education in Mathematics or for professional courses like Engineering, Physical and Bioscience, Commerce or Computer Applications. The present revised syllabus has been designed in accordance with National Curriculum Framework 2005 and as per guidelines given in Focus Group on Teaching of Mathematics 2005 which is to meet the emerging needs of all categories of students. Motivating the topics from real life situations and other subject areas, greater emphasis has been laid on application of various concepts.

Objectives

The broad objectives of teaching Mathematics at senior school stage intend to help the students:

- to acquire knowledge and critical understanding, particularly by way of motivation and visualization, of basic concepts, terms, principles, symbols and mastery of underlying processes and skills.
- to feel the flow of reasons while proving a result or solving a problem.
- to apply the knowledge and skills acquired to solve problems and wherever possible, by more than one method.
- to develop positive attitude to think, analyze and articulate logically.
- to develop interest in the subject by participating in related competitions.
- to acquaint students with different aspects of Mathematics used in daily life.
- to develop an interest in students to study Mathematics as a discipline.
- to develop awareness of the need for national integration, protection of environment, observance of small family norms, removal of social barriers, elimination of gender biases.
- to develop reverence and respect towards great Mathematicians for their contributions to the field of Mathematics.

COURSE STRUCTURE
CLASS XI (2018-19)

<table>
<thead>
<tr>
<th>No.</th>
<th>Units</th>
<th>No. of Periods</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I.</td>
<td>Sets and Functions</td>
<td>60</td>
<td>29</td>
</tr>
<tr>
<td>II.</td>
<td>Algebra</td>
<td>70</td>
<td>37</td>
</tr>
<tr>
<td>III.</td>
<td>Coordinate Geometry</td>
<td>40</td>
<td>13</td>
</tr>
<tr>
<td>IV.</td>
<td>Calculus</td>
<td>30</td>
<td>06</td>
</tr>
<tr>
<td>V.</td>
<td>Mathematical Reasoning</td>
<td>10</td>
<td>03</td>
</tr>
<tr>
<td>VI.</td>
<td>Statistics and Probability</td>
<td>30</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Total</td>
<td>240</td>
<td>100</td>
</tr>
</tbody>
</table>

*No chapter/unit-wise weightage. Care to be taken to cover all the chapters.
Unit-I: Sets and Functions

1. **Sets**
 (20) Periods

2. **Relations & Functions**
 (20) Periods
 Ordered pairs. Cartesian product of sets. Number of elements in the Cartesian product of two finite sets. Cartesian product of the set of reals with itself (upto R x R x R). Definition of relation, pictorial diagrams, domain, co-domain and range of a relation. Function as a special type of relation. Pictorial representation of a function, domain, co-domain and range of a function. Real valued functions, domain and range of these functions, constant, identity, polynomial, rational, modulus, signum, exponential, logarithmic and greatest integer functions, with their graphs. Sum, difference, product and quotients of functions.

3. **Trigonometric Functions**
 (20) Periods
 Positive and negative angles. Measuring angles in radians and in degrees and conversion from one measure to another. Definition of trigonometric functions with the help of unit circle. Truth of the identity $\sin^2x + \cos^2x = 1$, for all x. Signs of trigonometric functions. Domain and range of trigonometric functions and their graphs. Expressing $\sin(x \pm y)$ and $\cos(x \pm y)$ in terms of $\sin x$, $\sin y$, $\cos x$ & $\cos y$ and their simple applications. Deducing identities like the following:

 \[
 \tan (x \pm y) = \frac{\tan x \pm \tan y}{1 \mp \tan x \tan y}, \quad \cot(x \pm y) = \frac{\cot x \cot y \mp 1}{\cot y \pm \cot x}
 \]

 \[
 \sin \alpha \pm \sin\beta = 2 \sin \frac{1}{2}(\alpha \pm \beta) \cos \frac{1}{2}(\alpha \mp \beta)
 \]

 \[
 \cos \alpha + \cos\beta = 2 \cos \frac{1}{2}(\alpha + \beta) \cos \frac{1}{2}(\alpha - \beta)
 \]

 \[
 \cos \alpha - \cos\beta = -2 \sin \frac{1}{2}(\alpha + \beta) \sin \frac{1}{2}(\alpha - \beta)
 \]

 Identities related to $\sin 2x$, $\cos 2x$, $\tan 2x$, $\sin 3x$, $\cos 3x$ and $\tan 3x$. General solution of trigonometric equations of the type $\sin y = \sin a$, $\cos y = \cos a$ and $\tan y = \tan a$.

Unit-II: Algebra

1. **Principle of Mathematical Induction**
 (10) Periods
 Process of the proof by induction, motivating the application of the method by looking at natural numbers as the least inductive subset of real numbers. The principle of mathematical induction and simple applications.

2. **Complex Numbers and Quadratic Equations**
 (15) Periods
 Need for complex numbers, especially $\sqrt{-1}$, to be motivated by inability to solve some of the quadratic equations. Algebraic properties of complex numbers. Argand plane and polar representation of complex numbers. Statement of Fundamental Theorem of Algebra, solution of quadratic equations (with real coefficients) in the complex number system. Square root of a complex number.

3. **Linear Inequalities**
 (15) Periods
4. Permutations and Combinations (10 Periods)
Fundamental principle of counting. Factorial n. (n!) Permutations and combinations, derivation of formulae for \(n! \), and \(nCr \) and their connections, simple applications.

5. Binomial Theorem (10 Periods)
History, statement and proof of the binomial theorem for positive integral indices. Pascal's triangle, General and middle term in binomial expansion, simple applications.

6. Sequence and Series (10 Periods)
Sequence and Series. Arithmetic Progression (A. P.). Arithmetic Mean (A.M.) Geometric Progression (G.P.), general term of a G.P., sum of \(n \) terms of a G.P., infinite G.P. and its sum, geometric mean (G.M.), relation between A.M. and G.M. Formulae for the following special sums:

\[
\sum_{k=1}^{n} k, \sum_{k=1}^{n} k^2 \text{ and } \sum_{k=1}^{n} k^3
\]

Unit-III: Coordinate Geometry

1. Straight Lines (10 Periods)
Brief recall of two dimensional geometry from earlier classes. Shifting of origin. Slope of a line and angle between two lines. Various forms of equations of a line: parallel to axis, point-slope form, slope-intercept form, two-point form, intercept form and normal form. General equation of a line. Equation of family of lines passing through the point of intersection of two lines. Distance of a point from a line.

2. Conic Sections (20 Periods)
Sections of a cone: circles, ellipse, parabola, hyperbola, a point, a straight line and a pair of intersecting lines as a degenerated case of a conic section. Standard equations and simple properties of parabola, ellipse and hyperbola. Standard equation of a circle.

3. Introduction to Three-dimensional Geometry (10 Periods)
Coordinate axes and coordinate planes in three dimensions. Coordinates of a point. Distance between two points and section formula.

Unit-IV: Calculus

1. Limits and Derivatives (30 Periods)
Derivative introduced as rate of change both as that of distance function and geometrically. Intuitive idea of limit. Limits of polynomials and rational functions trigonometric, exponential and logarithmic functions. Definition of derivative relate it to scope of tangent of the curve, derivative of sum, difference, product and quotient of functions. Derivatives of polynomial and trigonometric functions.
Unit-V: Mathematical Reasoning

1. Mathematical Reasoning (10) Periods
Mathematically acceptable statements. Connecting words/ phrases - consolidating the understanding of "if and only if (necessary and sufficient) condition", "implies", "and/or", "implied by", "and", "or", "there exists" and their use through variety of examples related to real life and Mathematics. Validating the statements involving the connecting words, difference among contradiction, converse and contrapositive.

Unit-VI: Statistics and Probability

1. Statistics (15) Periods
Measures of Dispersion: Range, Mean deviation, variance and standard deviation of ungrouped/grouped data. Analysis of frequency distributions with equal means but different variances.

2. Probability (15) Periods
Random experiments; outcomes, sample spaces (set representation). Events; occurrence of events, ‘not’, ‘and’ and ‘or’ events, exhaustive events, mutually exclusive events, Axiomatic (set theoretic) probability, connections with other theories of earlier classes. Probability of an event, probability of ‘not’, ‘and’ and ‘or’ events.
MATHEMATICS (Code No. – 041)

QUESTION PAPER DESIGN

CLASS – XI (2018-19)

Time : 3 Hours

Max. Marks: 100

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Typology of Questions</th>
<th>Very Short Answer (1 Marks)</th>
<th>Short Answer (2 Marks)</th>
<th>Long Answer-I (4 marks)</th>
<th>Long Answer-II (6 marks)</th>
<th>Marks</th>
<th>% Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remembering- (Knowledge based Simple recall questions, to know specific facts, terms, concepts, principles, or theories, Identify, define, or recite, information)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>2</td>
<td>Understanding- (Comprehension -to be familiar with meaning and to understand conceptually, interpret, compare, contrast, explain, paraphrase information)</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>35</td>
<td>35%</td>
</tr>
<tr>
<td>3</td>
<td>Application (Use abstract information in concrete situation, to apply knowledge to new situations, Use given content to interpret a situation, provide an example, or solve a problem)</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>25</td>
<td>25%</td>
</tr>
<tr>
<td>4</td>
<td>High Order Thinking Skills (Analysis & Synthesis- Classify, compare, contrast, or differentiate between different pieces of information, Organize and/or integrate unique pieces of information from a variety of sources)</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>10</td>
<td>10%</td>
</tr>
<tr>
<td>5</td>
<td>Evaluation- (Appraise, judge, and/or justify the value or worth of a decision or outcome, or to predict outcomes based on values)</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10%</td>
</tr>
<tr>
<td>TOTAL</td>
<td>1 × 4 = 4</td>
<td>2 × 8 = 16</td>
<td>4 × 11 = 44</td>
<td>6 × 6 = 36</td>
<td>100</td>
<td>100%</td>
<td></td>
</tr>
</tbody>
</table>
QUESTION-WISE BREAK-UP

<table>
<thead>
<tr>
<th>Type of Question</th>
<th>Mark per Question</th>
<th>Total No. of Questions</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSA</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>SA</td>
<td>2</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>LA-I</td>
<td>4</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>LA-II</td>
<td>6</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>29</td>
<td>100</td>
</tr>
</tbody>
</table>

1. No chapter wise weightage. Care to be taken to cover all the chapters.
2. Suitable internal variations may be made for generating various templates keeping the overall weightage to different form of questions and typology of questions same.

Choice(s):
There will be no overall choice in the question paper.
However, 30% internal choices will be given in 4 marks and 6 marks questions.
CLASS-XII
(2018-19)

One Paper

Time: 3 hrs.
Max Marks. 100

<table>
<thead>
<tr>
<th>Units</th>
<th>No. of Periods</th>
<th>Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>I. Relations and Functions</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>II. Algebra</td>
<td>50</td>
<td>13</td>
</tr>
<tr>
<td>III. Calculus</td>
<td>80</td>
<td>44</td>
</tr>
<tr>
<td>IV. Vectors and Three-Dimensional Geometry</td>
<td>30</td>
<td>17</td>
</tr>
<tr>
<td>V. Linear Programming</td>
<td>20</td>
<td>06</td>
</tr>
<tr>
<td>VI. Probability</td>
<td>30</td>
<td>10</td>
</tr>
<tr>
<td>Total</td>
<td>240</td>
<td>100</td>
</tr>
</tbody>
</table>

Unit-I: Relations and Functions

1. Relations and Functions 15 Periods
 Types of relations: reflexive, symmetric, transitive and equivalence relations. One to one and onto functions, composite functions, inverse of a function. Binary operations.

2. Inverse Trigonometric Functions 15 Periods
 Definition, range, domain, principal value branch. Graphs of inverse trigonometric functions. Elementary properties of inverse trigonometric functions.

Unit-II: Algebra

1. Matrices 25 Periods
 Concept, notation, order, equality, types of matrices, zero and identity matrix, transpose of a matrix, symmetric and skew symmetric matrices. Operation on matrices: Addition and multiplication and multiplication with a scalar. Simple properties of addition, multiplication and scalar multiplication. Non-commutativity of multiplication of matrices and existence of non-zero matrices whose product is the zero matrix (restrict to square matrices of order 2). Concept of elementary row and column operations. Invertible matrices and proof of the uniqueness of inverse, if it exists; (Here all matrices will have real entries).

2. Determinants 25 Periods
 Determinant of a square matrix (up to 3 x 3 matrices), properties of determinants, minors, cofactors and applications of determinants in finding the area of a triangle. Adjoint and inverse of a square matrix. Consistency, inconsistency and number of solutions of system of linear equations by examples, solving system of linear equations in two or three variables (having unique solution) using inverse of a matrix.
Unit-III: Calculus

1. Continuity and Differentiability

Continuity and differentiability, derivative of composite functions, chain rule, derivatives of inverse trigonometric functions, derivative of implicit functions. Concept of exponential and logarithmic functions.

Derivatives of logarithmic and exponential functions. Logarithmic differentiation, derivative of functions expressed in parametric forms. Second order derivatives. Rolle’s and Lagrange’s Mean Value Theorems (without proof) and their geometric interpretation.

2. Applications of Derivatives

Applications of derivatives: rate of change of bodies, increasing/decreasing functions, tangents and normals, use of derivatives in approximation, maxima and minima (first derivative test motivated geometrically and second derivative test given as a provable tool). Simple problems (that illustrate basic principles and understanding of the subject as well as real-life situations).

3. Integrals

Integration as inverse process of differentiation. Integration of a variety of functions by substitution, by partial fractions and by parts, Evaluation of simple integrals of the following types and problems based on them.

\[\int \frac{dx}{x^2 \pm a^2}, \int \frac{dx}{\sqrt{x^2 \pm a^2}}, \int \frac{dx}{\sqrt{a^2 - x^2}}, \int \frac{dx}{ax^2 + bx + c}, \int \frac{dx}{\sqrt{ax^2 + bx + c}} \]
\[\int \frac{px + q}{ax^2 + bx + c} \, dx, \int \frac{px + q}{\sqrt{ax^2 + bx + c}} \, dx, \int \frac{dx}{\sqrt{a^2 - x^2}}, \int \sqrt{x^2 - a^2} \, dx \]
\[\int \sqrt{ax^2 + bx + c} \, dx, \int (px + q) \sqrt{ax^2 + bx + c} \, dx \]

Definite integrals as a limit of a sum, Fundamental Theorem of Calculus (without proof). Basic properties of definite integrals and evaluation of definite integrals.

4. Applications of the Integrals

Applications in finding the area under simple curves, especially lines, circles/parabolas/ellipses (in standard form only), Area between any of the two above said curves (the region should be clearly identifiable).

5. Differential Equations

Definition, order and degree, general and particular solutions of a differential equation. Formation of differential equation whose general solution is given. Solution of differential equations by method of separation of variables, solutions of homogeneous differential equations of first order and first degree. Solutions of linear differential equation of the type:

\[\frac{dy}{dx} + py = q, \] \text{ where } p \text{ and } q \text{ are functions of } x \text{ or constants.}

\[\frac{dx}{dy} + px = q, \] \text{ where } p \text{ and } q \text{ are functions of } y \text{ or constants.}
Unit-IV: Vectors and Three-Dimensional Geometry

1. Vectors 15 Periods

Vectors and scalars, magnitude and direction of a vector. Direction cosines and direction ratios of a vector. Types of vectors (equal, unit, zero, parallel and collinear vectors), position vector of a point, negative of a vector, components of a vector, addition of vectors, multiplication of a vector by a scalar, position vector of a point dividing a line segment in a given ratio. Definition, Geometrical Interpretation, properties and application of scalar (dot) product of vectors, vector (cross) product of vectors, scalar triple product of vectors.

2. Three - dimensional Geometry 15 Periods

Direction cosines and direction ratios of a line joining two points. Cartesian equation and vector equation of a line, coplanar and skew lines, shortest distance between two lines. Cartesian and vector equation of a plane. Angle between (i) two lines, (ii) two planes, (iii) a line and a plane. Distance of a point from a plane.

Unit-V: Linear Programming

1. Linear Programming 20 Periods

Introduction, related terminology such as constraints, objective function, optimization, different types of linear programming (L.P.) problems, mathematical formulation of L.P. problems, graphical method of solution for problems in two variables, feasible and infeasible regions (bounded or unbounded), feasible and infeasible solutions, optimal feasible solutions (up to three non-trivial constraints).

Unit-VI: Probability

1. Probability 30 Periods

Conditional probability, multiplication theorem on probability, independent events, total probability, Bayes’ theorem, Random variable and its probability distribution, mean and variance of random variable. Repeated independent (Bernoulli) trials and Binomial distribution.

Prescribed Books:

1) Mathematics Textbook for Class XI, NCERT Publications
2) Mathematics Part I - Textbook for Class XII, NCERT Publication
3) Mathematics Part II - Textbook for Class XII, NCERT Publication
4) Mathematics Exemplar Problem for Class XI, Published by NCERT
5) Mathematics Exemplar Problem for Class XII, Published by NCERT
MATHEMATICS (Code No. -041)

QUESTION PAPER DESIGN CLASS - XII

(2018 - 19)

Time: 3 Hours
Max. Marks: 100

<table>
<thead>
<tr>
<th>S. No.</th>
<th>Typology of Questions</th>
<th>Very Short Answer (1 Marks)</th>
<th>Short Answer (2 Marks)</th>
<th>Long Answer I (4 marks)</th>
<th>Long Answer II (6 marks)</th>
<th>Marks</th>
<th>% Weightage</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Remembering- (Knowledge based Simple recall questions, to know specific facts, terms, concepts, principles, or theories, Identify, define, or recite, information)</td>
<td>2</td>
<td>2</td>
<td>2</td>
<td>1</td>
<td>20</td>
<td>20%</td>
</tr>
<tr>
<td>2</td>
<td>Understanding- (Comprehension -to be familiar with meaning and to understand conceptually, interpret, compare, contrast, explain, paraphrase information)</td>
<td>1</td>
<td>3</td>
<td>4</td>
<td>2</td>
<td>35</td>
<td>35%</td>
</tr>
<tr>
<td>3</td>
<td>Application (Use abstract information in concrete situation, to apply knowledge to new situations, Use given content to interpret a situation, provide an example, or solve a problem)</td>
<td>1</td>
<td>-</td>
<td>3</td>
<td>2</td>
<td>25</td>
<td>25%</td>
</tr>
<tr>
<td>4</td>
<td>High Order Thinking Skills (Analysis & Synthesis- Classify, compare, contrast, or differentiate between different pieces of information, Organize and/or integrate unique pieces of information from a variety of sources)</td>
<td>-</td>
<td>3</td>
<td>1</td>
<td>-</td>
<td>10</td>
<td>10%</td>
</tr>
<tr>
<td>5</td>
<td>Evaluation (Appraise, judge, and/or justify the value or worth of a decision or outcome, or to predict outcomes based on values)</td>
<td>-</td>
<td>-</td>
<td>1</td>
<td>1</td>
<td>10</td>
<td>10%</td>
</tr>
<tr>
<td>TOTAL</td>
<td></td>
<td>$1 \times 4 = 4$</td>
<td>$2 \times 8 = 16$</td>
<td>$4 \times 11 = 44$</td>
<td>$6 \times 6 = 36$</td>
<td>100</td>
<td>$100%$</td>
</tr>
</tbody>
</table>
QUESTION WISE BREAK UP

<table>
<thead>
<tr>
<th>Type of Question</th>
<th>Mark per Question</th>
<th>Total No. of Questions</th>
<th>Total Marks</th>
</tr>
</thead>
<tbody>
<tr>
<td>VSA</td>
<td>1</td>
<td>4</td>
<td>4</td>
</tr>
<tr>
<td>SA</td>
<td>2</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>LA-I</td>
<td>4</td>
<td>11</td>
<td>44</td>
</tr>
<tr>
<td>LA-II</td>
<td>6</td>
<td>6</td>
<td>36</td>
</tr>
<tr>
<td>Total</td>
<td></td>
<td>29</td>
<td>100</td>
</tr>
</tbody>
</table>

1. No chapter wise weightage. Care to be taken to cover all the chapters.
2. Suitable internal variations may be made for generating various templates keeping the overall weightage to different form of questions and typology of questions same.

Choice(s):
There will be no overall choice in the question paper. However, 30% internal choices will be given in 4 marks and 6 marks questions.