

_

Learning Framework Classes 11-12 Physics

First Edition: July 2023

Unpriced e-Publication, not for sale

Co-created by CBSE Centre for Excellence in Assessment and Educational Initiatives

Learning Framework for Classes 11-12 Physics (CBSE)

FOREWORD

The vision of the National Education Policy (NEP) 2020 released by the Government of India, directs that children not only learn but more importantly learn how to learn. Education must move towards less content, and more towards learning about how to think critically and solve problems, how to be creative and multidisciplinary, and how to innovate, adapt, and absorb new material in novel and changing fields. Pedagogy must evolve to make education more experiential, holistic, integrated, inquiry-driven, discovery-oriented, learner-centred, discussion-based, flexible, and, of course, enjoyable. The policy has a clear mandate for competency-based education (CBE) to enhance the acquisition of critical 21st-century skills by the learners. The first determinant for implementing CBE is a curriculum which is aligned with defined learning outcomes and that clearly states the indicators to be achieved.

The Central Board of Secondary Education (CBSE) has collaborated with Educational Initiatives, to develop the Learning Framework for twelve subjects of Grades 11 and 12, i.e., English, Hindi, Mathematics, Physics, Chemistry, Biology, History, Geography, Economics, Accountancy, Business Studies and Computer Science. The Learning Frameworks comprise explicitly stated knowledge, skills and dispositions that an education system should try to achieve. These frameworks will help develop a common shared understanding among teachers, students and other stakeholders and serve as a common benchmark for teaching, learning and assessment across the country.

These frameworks present indicators that are aligned with the CBSE curriculum and the NCERT learning outcomes. They further outline samples of pedagogical processes and assessment strategies to encourage curiosity, objectivity, and creativity to nurture scientific temper. This framework would be a key resource for teachers executing the curriculum. They have been developed to ensure that teachers align the learning to meet the set quality standards and also use it to track the learning levels of students. The effort has been to synchronise focus on quality education with uniformity in quality of standards across CBSE schools.

We hope, these frameworks not only become a reference point for competency-based education across the country but also facilitate planning and design of teaching-learning processes and assessment strategies by teachers and other stakeholders.

Please note that the learning frameworks have been drafted based on the 2022-23 curriculum. Certain chapters and topics rationalized in the 2023-24 curriculum are retained in this document. The rationalized sections are referenced under Chapter#3 - Content Domains. Please note that the unit or content marked with * are partially rationalised whereas those with ** are the ones deleted in full. Feedback regarding the framework is welcome. Any further feedback and suggestions will be incorporated in subsequent editions.

Team CBSE

PREFACE

The National Education Policy 2020 has outlined the importance of competency-focused education in classrooms, leading to curricular and pedagogical reforms in the school systems. The policy emphasises the development of higher-order skills such as analysis, critical thinking and problem-solving through classroom instructions and aligned assessments. These skills are essential indicators which will further the dissemination of pedagogy and learning outcomes across schools and boards.

To propagate indicator-based learning through 'Learning Frameworks', the Central Board of Secondary Education (CBSE) has collaborated with Educational Initiatives (Ei). Learning frameworks are a comprehensive package which provides learning outcomes, indicators, assessment frameworks, samples of pedagogical processes, tools and techniques for formative assessment, blueprints, assessment items and rubrics. 12 such frameworks have been developed for English, Hindi, Mathematics, Physics, Chemistry, Biology, History, Geography, Economics, Accountancy, Business Studies and Computer Science in Classes 11 and 12. The frameworks are adopted from the learning outcomes outlined in the NCERT which are mapped to key concepts of the content. These content domain-specific learning outcomes are broken down into indicators which define the specific skills a learner needs to attain. A clear understanding of these Learning Outcomes (LOs) will be immensely helpful for teachers and students to learn better. This document will help teachers to focus on skills of the subject in addition to concepts.

"As per the National Focus Group Position Paper on Teaching of Science, "At the higher secondary stage science should be introduced as separate disciplines with emphasis on experiments/technology and problem-solving. The content should not be information-laden, and not aim to widely cover all aspects of the subject. Considering the vast breadth of knowledge in any subject, the exigencies of time and the student's capacity, some delimitation, or rather, identification of core areas has to be done. At this stage, core topics of a discipline, considering recent advances, should be carefully identified and treated with appropriate rigour and depth".

As per NCERT Learning Outcomes for Higher Secondary Stage "Physics is basic to the understanding of almost all the branches of science and technology. The intricate concepts of Physics must be understood, comprehended and appreciated. Students must learn to ask questions like 'why', 'how', and 'how do we know it'. They will find almost always that the question 'why' has no answer within the domain of Physics and science in general. In the learning of Physics, there should be stress upon the learner acquiring inquiry and process science skills. This is necessary since the inquiry and process skills are more enduring and enable the learner to cope with the ever-changing and expanding field of science and technology. Inquiry skills should be supported and strengthened by investigative, reasoning and quantitative skills. The theoretical component of higher secondary Physics should strongly emphasise problem-solving, awareness of conceptual pitfalls, linkages among various concepts and critical interrogation of different topics. Narratives giving insights into the historical development of key concepts of Physics should be integrated into the content judiciously. The teaching of the theoretical aspects and the experiments based on them should be closely integrated and dealt with together."

CONTENTS

1.	NATURE OF THE SUBJECT	1
2.	STAGE SPECIFIC CURRICULAR EXPECTATIONS	4
3.	CONTENT DOMAINS	5
	CLASS 11 CONTENT UNITS AND TEXTBOOK CHAPTERS	5
	CLASS 12 CONTENT UNITS AND TEXTBOOK CHAPTERS	7
4.	SUBJECT SPECIFIC COGNITIVE DOMAINS	8
	CATEGORIES OF COGNITIVE DOMAINS	8
	CATEGORIES OF KNOWLEDGE DOMAINS	11
	ASSESSMENT TASKS FOR DIFFERENT COGNITIVE DOMAINS	12
	SUGGESTED SAMPLE TASKS FROM DIFFERENT COGNITIVE DOMAINS SPECIFIC TO A CONTENT UNIT	17
5.	LEARNING OUTCOMES	20
	CLASS 11 LEARNING OUTCOMES FOR PHYSICS	20
	CLASS 12 LEARNING OUTCOMES FOR PHYSICS	22
	CLASSES 11-12 COMMON LEARNING OUTCOMES FOR PHYSICS	24
6.	CONTENT DOMAIN SPECIFIC LEARNING OUTCOMES AND INDICATORS	26
	CLASS 11 CONTENT DOMAIN SPECIFIC LEARNING OUTCOMES AND INDICATORS	27
	CLASS 12 CONTENT DOMAIN SPECIFIC LEARNING OUTCOMES AND INDICATORS	67
7.	SAMPLE PEDAGOGICAL PROCESSES AND ASSESSMENT STRATEGIES	110
8.	TEST PAPER DESIGN	. 121
	TEST PAPER BLUEPRINTS FOR CLASS 12 FINAL EXAMINATION	. 121

_

9.	ASSESSMENT OF PRACTICAL WORK	123
	DESIGN OF THE PRACTICAL EXAMINATION	123
	SUGGESTED EXPERIMENTS, PRACTICAL ACTIVITIES AND INVESTIGATIVE PROJECTS – CLASS 11	124
	SUGGESTED EXPERIMENTS, PRACTICAL ACTIVITIES AND INVESTIGATIVE PROJECTS – CLASS 12	126
10.	ESSENTIAL IDEAS WITH SAMPLE QUESTIONS – GRADE 11	129
11.	ESSENTIAL IDEAS WITH SAMPLE QUESTIONS – GRADE 12	161
12.	REFERENCE DOCUMENTS	193
АСК	NOWLEDGEMENT	194

_

1. NATURE OF THE SUBJECT

Physics is said to be the most basic of all sciences, concerning itself with energy, matter, space and time, and their interactions. Its laws and theories express the general truths of nature. Physicists have asked questions about the deeper structure of matter and the universe, from the level of subatomic particles to galaxies and black holes, and the answers they have found have led to more exciting questions and experiments. One can even say that discoveries in the last century in the areas of quantum Physics and relativistic Physics have pushed our understanding of nature beyond human imagination. While clear logical thinking is required in pursuing questions in Physics like any other scientific discipline, there is a lot of scope for creative imagination and problem-solving for making important breakthroughs which sometimes may even require a complete paradigm shift. Another key driver for the development of scientific knowledge has been the motivation to improve the welfare of humanity by using the knowledge to create innovative and useful technologies. Here too the discoveries made in Physics over the last century have given humanity technologies which even a century back would have been considered more marvelous than any magic. The advances in nuclear and solar energy technology, satellite communication and GPS technology, semiconductor devices and optical data transfer have all shaped the modern world at an unimaginable scale and rate.

Students who choose to study Physics at a higher secondary stage in India often do so keeping in mind the requirements of professional courses which require the application of Physics. There are others too who are interested and curious to know and understand deeply the concepts and principles. These students may wish to study Physics further in college and beyond. Therefore, the higher secondary curriculum of Physics needs to cater to both deeper conceptual understanding and problem-solving and applications in real-life and technological contexts. The curriculum must also consider the steep gradient from the secondary school science curriculum. It therefore needs to help students start from basic concepts in each domain of Physics. The focus of the Physics curriculum at this stage should be on understanding of core concepts and application of the same in authentic contexts instead of rote learning and superficial covering of topics. It is also important that through the study of Physics, students also get to appreciate the nature of science as a dynamic process which is ever-expanding, deepening and if required, revising a vast body of knowledge which provides us with the best possible model of the reality of the physical and natural world.

Active learning, through which students become active participants in the learning process, is an important means for developing student's scientific skills. In the process of active learning, students move from being passive recipients of knowledge to being participants in activities that encompass analysis, synthesis and evaluation besides developing skills, values and attitudes. Active learning not only emphasises the development of students' scientific skills but also their exploration of their own scientific aptitude and values.

The basic elements of active learning are speaking, listening, reading, writing and reflecting. These basic elements involve cognitive activities that allow students to clarify the question, and consolidate and appropriate the new knowledge. The second factor of active learning is the learning strategies that incorporate the above basic elements. These are small groups, cooperative work, case studies, simulation, discussion, problem-

solving and journal writing. The third factor of active learning is teaching resources that the teacher uses to encourage students to interact and participate actively in the activities.

Active learning techniques and pedagogical approaches enable an effective increase in the attitudes and successes of the students. For the concepts and subjects about Physics or science that are not understood by students and lead to some confusion, it is possible to make them clear by teaching these concepts more concretely and through research, observation and experiments. Students should be encouraged to take responsibility and help them to develop their creativity.

Following are the desirable scientific teaching practices. These practices are often closely associated with student success.

Learner-centered classroom environments -- identifying, confronting, and resolving preconceptions, and beginning instruction with what students know.

- Knowledge centered -- focus on how something is known as much as what is known, and provide examples of mastery.
- Assessment centered -- make frequent attempts to make students' thinking and learning visible as a guide for further instruction.
- Community-centered -- encourages a culture of questioning, including risk-taking and respect for others
- Regularly employ active learning strategies
- Provide meaningful, engaged learning for all students.
- Provide an active approach to learning that includes a strong emphasis on student interaction with phenomena.
- Clear and explicit linkage between representations and phenomena represented.
- Engage students in challenging, authentic, interdisciplinary tasks.
- Provide opportunities for students to observe, explore, and test hypotheses.
- Encourage the students' imagination, logic, and open-mindedness.
- Incorporate the content and processes of science giving due regard to science teaching standards.
- Link scientific concepts and processes with prior learning in science and other disciplines.
- Depth and breadth of coverage are reasonably balanced.
- Engage all learners in meaningful scientific tasks involving high-order thinking skills.

- Providing and receiving feedback
- Accommodating student learning styles
- Teaching in a way that is consistent with student development
- Including real-world applications in the learning process
- Moving from concrete to abstract
- Requiring practice of learned skills
- Employing learning cycles observation, generalization, verification, application
- Making use of multiple intelligences
- Eliciting and addressing misconceptions
- Promoting critical thinking
- Creating, sharing, and using scoring rubrics
- Aligning objectives, instruction, and assessment
- Focusing on depth in addition to breadth of coverage
- Placing strong emphasis on interaction with phenomena
- Making clear and explicit linkage of representations to phenomena
- Using multiple representations of physical phenomena

2. STAGE SPECIFIC CURRICULAR EXPECTATIONS

Learning Outcomes at the Higher Secondary stage developed by the National Council for Educational Research and Training (NCERT) mention the following curricular expectations for Physics.

- CE1. develop interest to study Physics as a discipline
- CE2. strengthen the concepts developed at the secondary stage to acquire firm ground work and foundation for further learning of Physics more effectively and learning the relationship with real life situations
- CE3. apply reasoning to develop conceptual understanding of Physics concepts
- CE4. realize and appreciate the interface of Physics with other disciplines
- CE5. get exposure to different processes used in Physics-related industrial and technological applications
- CE6. develop process-skills and experimental, observational, manipulative, decision-making and investigatory skills
- CE7. synthesize various science/Physics concepts to solve problems and thinking critically in the process of learning Physics
- CE8. understand the relationship between nature and matter on scientific basis, develop positive scientific attitude, and appreciate the contribution of Physics towards the improvement of quality of life and human welfare
- CE9. comprehend the contemporary knowledge and develop aesthetic sensibilities
- CE10. appreciate the role and impact of Physics and technology, and their linkages with overall national development

The focus of the curriculum must therefore be on developing conceptual understanding, and on understanding the relationship of the disciplinary knowledge with real-life situations, with technology and with other disciplines. The curriculum should also aim at developing both discipline-specific process skills, e.g. scientific inquiry, observation, etc. and general thinking skills, e.g. problem solving, critical thinking, etc. in the context of learning Physics.

3. CONTENT DOMAINS

The content in the CBSE curriculum has been organized around broad content units. Class 11 content covers mechanics, thermodynamics and wave motion, and this is covered in the first year. Class 12 content covers electromagnetism, optics and atomic Physics, which is covered in the second year. The content units for the two classes, with the chapters from the NCERT textbooks and the recommended number of 40-minute teaching periods, are mentioned in the tables below.

Please note that the units or content marked with * are partially rationalised whereas those with ** are the ones deleted in full, as per the academic year 2023-24 syllabus.

Class 11 Content units and textbook chapters

	Content units	NCERT textbook chapters	Number of teaching periods
I.	Physical world and measurement	1. Units and measurements*	10
		2. Motion in a straight line	
II.	Kinematics	3. Motion in a plane*	24
		4. Laws of motion	
III.	Laws of motion*	5. Work, energy and power	14
IV.	Work, energy and power	6. System of particles and rotational motion*	12
V.	Motion of system of particles and rigid body	7. Gravitation	18
VI.	Gravitation	8. Mechanical properties of solids	12
VII.	Properties of bulk matter	9. Mechanical properties of fluids	24

	1	
	10. Thermal properties of matter	
	11. Thermodynamics	
VIII. Thermodynamics	12. Kinetic theory	12
IX. Behaviour of perfect gases and kinetic theory of gases	13. Oscillations	8
X. Oscillations and waves	14. Waves*	26

Class 12 Content units and textbook chapters

Content units	NCERT textbook chapters	Number of teaching periods	
I Electrostatica	1. Electric charges and fields*	26	
I. Electrostatics	2. Electrostatic potential and capacitance*	20	
II. Current electricity	3. Current electricity*	18	
III Magnetic offects of surrout and magneticm	4. Moving charges and magnetism*	25	
magnetic effects of current and magnetism	5. Magnetism and matter*	25	
IV. Electromagnetic induction and alternating	6. Electromagnetic induction*	24	
currents	7. Alternating current*	24	
V. Electromagnetic waves	8. Electromagnetic waves*	4	
VI. Optigg	9. Ray optics and optical instruments*	20	
VI. Optics	10. Waves optics*	50	
VII. Dual nature of radiation and matter	11. Dual nature of radiation and matter*	8	
VIII Atoms and musici	12. Atoms*	15	
VIII. Atoms and nuclei	13. Nuclei*	15	
IX. Electronic devices	14. Semiconductor electronics: materials, devices and simple circuits*	10	

4. SUBJECT SPECIFIC COGNITIVE DOMAINS

"As the Board is progressively allowing more space to 'learning outcome based' assessment in place of textbook driven assessment, question papers of Board examinations will have more questions based on real-life situations requiring students to apply, analyse, evaluate and synthesize information as per the stipulated outcomes. The core-indicators to be assessed in all questions, however, will be from the prescribed syllabus and textbooks recommended therein. This will eliminate predictability and rote learning to a large extent."

[CBSE Curriculum}

A statement of a learning objective contains a verb (an action) and an object (usually a noun).

- The verb generally refers to the actions associated with the intended cognitive process.
- The object generally describes the knowledge the students are expected to acquire or construct.

CATEGORIES OF COGNITIVE DOMAINS

Revised Bloom's taxonomy (Anderson and Krathwohl, 2001) of cognitive process dimension has six categories, each associated with a set of specific cognitive processes. CBSE curriculum intends to have a balance of these categories of intellectual tasks in the teaching-learning and assessment of learning of a subject. These six categories as described in the revised Bloom's taxonomy, with their specific cognitive processes, are mentioned below.

COGNITIVE DOMAIN – REMEMBER

'Remember' involves retrieving relevant knowledge from long-term memory. Recognising and recalling are the specific cognitive skills associated with this cognitive domain. Asking students to provide a definition of a concept, e.g. of nuclear binding energy, or to label the schematic diagram of an instrument or a device are examples of assessment tasks that cover this cognitive domain.

COGNITIVE DOMAIN – UNDERSTAND

'Understand' involves 'constructing meaning from instructional messages, including oral, written and graphic communication'. Interpreting, exemplifying, classifying, summarizing, inferring, comparing, and explaining are the specific cognitive skills associated with this cognitive domain.

Asking students to explain a phenomenon in terms of physical concepts/principles, e.g. how a charged object pulls bits of paper, or to compare two physical situations, e.g. magnetic field produced by a permanent magnet and by a current-carrying solenoid are examples of assessment tasks covering this cognitive domain.

COGNITIVE DOMAIN – APPLY

'Apply' involves carrying out or using a procedure in a given situation. Executing and implementing are the specific cognitive skills associated with this cognitive domain. Assessment tasks wherein students have to use the knowledge and/or procedures to solve a problem or to arrive at a decision in a given real-life situation cover this cognitive domain. Solving numerical problems based on formulae and mathematical relationships is a common example of such a task. However, problems demanding an application of qualitative understanding and application of concepts would also fall in this domain.

COGNITIVE DOMAIN – ANALYSE

'Analyse' involves breaking material into constituent parts and determining how parts relate to one another and to an overall structure and purpose. Differentiating, organising and attributing are the specific cognitive skills associated with this cognitive domain. Asking students to compare and explain the relationship between two physical quantities from the same content domain, e.g. electric potential and electric potential energy or asking them to identify relevant factors in a given situation, e.g. identifying factors which would affect the final velocity of an object thrown from a height are examples of some tasks from this cognitive domain.

COGNITIVE DOMAIN – EVALUATE

'Evaluate' involves making judgments based on criteria and standards. Checking and critiquing are the specific cognitive skills associated with this cognitive domain. Assessment tasks that require a deeper level of understanding wherein students are required to provide justification for their choice, e.g. explaining if given data support a conclusion, can be used for this cognitive domain.

COGNITIVE DOMAIN – CREATE

'Create' involves putting elements together to form a coherent or functional whole; or reorganising elements into a new pattern or structure. Generating, planning and producing are the specific cognitive skills associated with this cognitive domain. Tasks that require students to produce new artefacts based on what they have learnt, e.g. developing a model or writing a response to an open-ended question or coming up with hypotheses that can explain an observed phenomenon can assess students' proficiency in this cognitive domain.

CATEGORIES OF KNOWLEDGE DOMAINS

The knowledge dimension ranges from concrete (factual) to abstract (metacognitive). Representation of the knowledge dimension as several discrete steps can be a bit misleading. For example, all procedural knowledge may not be more abstract than all conceptual knowledge. And metacognitive knowledge is a special case. In this model, "metacognitive knowledge" is knowledge of one's own cognition and about oneself in relation to various subject matters.

KNOWLEDGE DOMAIN – FACTUAL

Factual Knowledge – The basic elements students must know to be acquainted with a discipline or solve problems. This dimension refers to essential facts, terminology, details or elements students must know or be familiar with to understand a discipline or solve a problem in it. For example, the definition of non-uniform motion before the introduction of what results in an acceleration in a body; the knowledge of Cartesian sign conventions before using lens and mirror formula; etc

KNOWLEDGE DOMAIN – CONCEPTUAL

Conceptual Knowledge – The inter-relationships among the basic elements within a larger structure that enable them to function together. It is the knowledge of classifications, principles, generalizations, theories, models, or structures pertinent to a particular disciplinary area. For example: a charged particle moving with velocity perpendicular to a magnetic field, experiences centripetal force that is provided by the magnetic force.

KNOWLEDGE DOMAIN -PROCEDURAL

Procedural Knowledge – How to do something, methods of inquiry, and criteria for using skills, algorithms, techniques, and methods. It refers to information or knowledge that helps students to do something specific to a discipline, subject, or area of study. It also refers to methods of inquiry, very specific or finite skills, algorithms, techniques, and particular methodologies. For example, for resistors in series, the voltage always divides and the current is the same through each one of them while its vice versa in the case of resistors in parallel. Hence while finding equivalent resistance of multiple networks, this knowledge becomes the basis of identifying whether the given adjacent resistors in a given network are in series or parallel.

KNOWLEDGE DOMAIN -METACOGNITIVE

Metacognitive Knowledge – Knowledge of cognition in general, as well as awareness and knowledge of one's own cognition. It is the awareness of one's own cognition and particular cognitive processes. It is strategic or reflective knowledge about solving problems and cognitive tasks, including contextual and conditional knowledge and knowledge of self. For example, while taking a turn while driving a car, it is out of self-experience that the driver slows down the car to take a turn of a small radius of curvature. From the Physics problem-solving point of view, for a given frictional force between the car tyres and the road, a larger speed ensures a larger radius of the turn and a smaller speed corresponds to a smaller radius of the turn, to avoid overturning the car.

ASSESSMENT TASKS FOR DIFFERENT COGNITIVE DOMAINS

Some more examples of kinds of assessment tasks that can be associated with the different cognitive domains are given below. The following list should be taken as an indicative not an exhaustive one.

Cognitive domain	Assessment tasks
Remember	Identify, state or define facts, relationships, formulae or concepts.
 recognising 	Identify or describe properties of physical concepts, materials or objects.
 recalling 	Recognize and correctly use scientific vocabulary, symbols, abbreviations, units, and scales. Identify the appropriate use for scientific equipment and procedures.
Understand	
• interpreting	Interpret information in the form of texts, graphs or images in terms of physical concepts and their relationships.
• exemplifying	Provide examples of physical concepts or physical phenomena related to specific concepts.
 classifying 	Classify or compare situations, processes or objects using physical concepts or principles.
• summarizing	Provide a summary of the development of a physical concept, model or principle.

• inferring	Derive a mathematical relationship representing a relationship between different physical quantities.
• comparing	Infer relationships between physical concepts from given data or graphs.
• explaining	Provide or identify an explanation for an observation or a natural phenomenon using physical concepts or principles.
Applyexecutingimplementing	Use knowledge of physical concepts and their relationships to solve problems set in a variety of situations. Use a known procedure to measure a physical quantity or to find the relationship between physical quantities. Relate knowledge of an underlying concept to an observed or inferred property, behaviour or use of objects, or materials.
Analysedifferentiatingorganisingattributing	Describe relationships between physical concepts or principles from within the same or across different content domains. Differentiate between physical concepts, principles or phenomena within the same content domain. Use evidence and conceptual understanding to predict the effects of changes in conditions on a physical system. Identify or formulate questions that can be answered by a given experiment or scientific investigation. Identify characteristics of scientific investigations in terms of dependent/independent or controlled/measured variables.
Evaluate	
checking	Evaluate alternative explanations for an observed phenomenon.
• critiquing	Compare different approaches to a given problem. Evaluate conclusions drawn from a scientific investigation.
Create	
• generating	Answer questions or make decisions which involve considering a number of different or related concepts and principles.
• planning	Plan an experiment with clear steps to investigate a question/problem or to test a hypothesis.
• producing	Make a model to illustrate a physical concept or principle.

These are learning objectives – not learning activities. It may be useful to think of preceding each objective with something like, "Students will be able to...:"

	The Knowledge Dimension Factual The basic elements a student must know to be acquainted with a discipline or solve problems.	The Knowledge Dimension Conceptual The interrelationships among the basic elements within a larger structure that enable them to function together.	The Knowledge Dimension Procedural How to do something, methods of inquiry, and criteria for using skills, algorithms, techniques, and methods.	The Knowledge Dimension Metacognitive Knowledge of cognition in general and awareness and knowledge of one's own cognition
The Cognitive Process Dimension Remember Retrieve relevant knowledge from long- term memory.	Remember + Factual List the Cartesian sign conventions for mirror formulae	Remember + Conceptual Recognize the reasons for heating up of an oscillating pendulum in the presence of magnetic field	Remember + Procedural Recall how to connect resistors in series or parallel to an external power source	Remember + Metacognition Identify the strategies to remember the image formations in lens and mirrors for different positions of the objects
The Cognitive Process Dimension	Understand + Factual	Understand + Conceptual	Understand + Procedural	Understand + Metacognition
Understand Construct meaning from instructional messages, including oral, written and graphic communication.	Summarise the factors on which magnetic force on a moving charge particle depends upon	Classify materials as para-, dia- and ferro- based on their magnetic properties	Clarify steps to assemble resistors to form a Wheatstone or bridge	Predict the galvanometer deflection while a magnet is moved towards the coil connected to it, after noticing the direction of deflection while the

				magnet moved away from the coil
The Cognitive Process Dimension Apply Carry out or use a procedure in a given situation.	Apply + Factual Respond to recurring activity of moving an object towards or away from the mirror	Apply + Conceptual Provide suggestion to form circuits providing maximum illumination for a given input power source	Apply + Procedural Carry out tests to determine terminal velocities of a given object in liquids of different viscosities	Apply + Metacognition Use techniques that match with one's strengths. For ex., if a student is good with mechanics and force law, the student may undertake a task to prove that a ball thrown through a tunnel passing through the center of Earth undergoes SHM
The Cognitive Process Dimension Analyze Break material into foundational parts and determine how parts relate to one another and the overall structure or purpose	Analyse + Factual Select a material that is most suitable for induction cookware	Analyse + Conceptual Differentiate between two mirrors without touching them	Analyse + Procedural Integrate the working of cyclotron with the principles of magnetic force of accelerating charge	Analyse + Metacognition Deconstruct the non- inertial reference frames and the presence of pseudo forces
The Cognitive Process Dimension Evaluate Make judgments based	Evaluate + Factual Check for illustrations that constitute non- inertial reference frames	Evaluate + Conceptual Determine the relevance of beat formation while tuning a wired musical	Evaluate + Procedural Judge the efficiency of a heat engine in comparison to a perfect Carnot engine	Evaluate + Metacognition Reflect on the understanding of image formation in lens while

standards.		instrument like a violin		reproducing the ray diagrams in telescope and microscope
The Cognitive Process Dimension Create Put elements together to form a coherent whole; reorganize into a new pattern or structure.	Create + Factual Generate a list of object positions in ray diagrams (lens and mirrors) that produce images with positive magnifications	Create + Conceptual Assemble a given set of resistors into a suitable network that results in minimum (or maximum) equivalent resistance	Create + Procedural Design a transformer that produces a desired voltage output for a given input voltage	Create + Metacognition Create a flow diagram that outlines the effect on charges as they are at rest or move with varying velocities, with or without the presence of external magnetic or electric fields in their vicinity

SUGGESTED SAMPLE TASKS FROM DIFFERENT COGNITIVE DOMAINS SPECIFIC TO A CONTENT UNIT

Some specific examples of tasks from different cognitive domains are described below for two content chapters from classes 11 and 12 NCERT Physics textbooks. A chapter may not always cover all six cognitive domains. The following list of tasks should be taken as an indicative list not a comprehensive one.

CHAPTER 1. ELECTRIC CHARGES AND FIELDS – CLASS 12

Cognitive domain	Suggested sample tasks		
Remember	• Define electric flux.		
Remember	How does the electric field of a dipole vary with respect to the distance from its centre?		
	• Explain how a charged plastic comb attracts small bits of paper.		
Understand	• Explain why the magnitude of electric field drops off more rapidly away from an electric dipole as compared to from a point charge.		
	• Derive the expression for the electric field at a point on the equatorial plane of an electric dipole.		
Apply	 The electric field in the atmosphere near the surface of the Earth is about 100 N/C. Estimate the amount of net electric charge in a cuboid of air of height 2 m and a square base of side 50 cm, standing on the ground on its square base. The diagram below shows three point charges and three Gaussian surfaces (spherical) – S1 S2 and S3 Compare 		
	• The diagram below shows three-point charges and three Gaussian surfaces (spherical) – 51, 52 and 55. Compare the electric flux through S1, S2 and S3.		

	 +2C +2C +2C S1 S2 S3 A metal sphere S1 suspended from an insulating thread has a total positive charge of +(Q1+q) and a total negative charge of (Q1). What is the net charge on the sphere S1? Another metal sphere S2 of the same size and carrying a positive charge of +Q and a negative charge of -Q is brought in contact with the suspended metal sphere and is then separated from it. What is the total positive charge on the suspended metal sphere S1 now? What is the total negative charge on sphere S2 now?
Analyse	 Explain the effect of increasing the distance between the two point charges in an electric dipole on the electric field measured at a point (i) on the axis of the dipole, and (ii) on the equatorial plane of the dipole. Explain how the magnitude of the electric field inside and outside a uniformly charged spherical shell will change if the radius of the shell is increased without changing the net charge on its surface. (Imagine a balloon with a conductive coating carrying a net charge on its surface being inflated.) Differentiate between 'charging by contact' and 'charging by induction'. Use the mathematical form of Coulomb's law to show that the force applied by two point charges on each other is equal in magnitude and opposite in direction per Newton's third law.
Evaluate	 Evaluate the role of the following forces on the oil drops in Millikan's oil drop experiment and identify the ones that can be ignored for the experiment. (Description of the experiment with values of physical quantities involved is provided.) electrostatic force, gravitational force, drag force, buoyant force Electric field in the vicinity of a continuous charge distribution can be computed using one of the following approaches:

Γ							
	• Compute the electric field due to an infinitesimally small element of the charge distribution, and integrate it over the whole charge distribution.						
	• Draw a suitable Gaussian surface and compute the electric field using Gauss's law.						
	• Compare the two approaches and illustrate through an example each where you would prefer one approach to another.						
Create	 Draw the electric field lines for the following configuration of point charges. -q +q +q Here is a basic description of an activity that can be done to verify Coulomb's law: Two small pith balls with a conducting coating are charged equally. They are suspended from insulating threads and the separation between them is measured. The charge on the pith balls is reduced to half of the original and the separation between them is again measured. Describe in detail the following: 						
	(i) How can the two pith balls be charged equally?						
	(ii) How can the charge on the pith balls be reduced to half?						
	(iii) How can the measurements of the separation between the pith balls be used to verify Coulomb's law?						
	[Hint: A component of the tension in the suspending threads will balance the repulsive force between the pith balls.]						

5. LEARNING OUTCOMES

"Indicator based Learning focuses on the student's demonstration of desired learning outcomes as central to the learning process. Learning outcomes are statements of abilities that are expected students will gain as a result of learning the activity. Learning outcomes are, thus, statements of what a learner is expected to know, understand and/or be able to demonstrate after completion of a process of learning. Therefore, the focus is on measuring learning through attainment of prescribed learning outcomes, rather than on measuring time."

[Senior School Curriculum, CBSE]

Following learning outcomes for the senior secondary stage developed by the National Council for Educational Research and Training (NCERT) state important knowledge, skills and dispositions students need to attain at the end of an academic year in classes 11 and 12 in the context of learning Physics.

CLASS 11 LEARNING OUTCOMES FOR PHYSICS

- (1) **recognises the concepts of Physics related to various natural phenomena**; such as, force, momentum, mechanical properties of solids and fluids, simple harmonic motion, greenhouse effect, variation in speed of sound in different media
- (2) **differentiates between certain physical quantities**; such as, between distance and displacement; speed and velocity; rectilinear and curvilinear motions; average, relative, and instantaneous velocity and speed; stress and strain; Young's modulus, shear modulus and bulk modulus
- (3) **uses International system of units (SI Units), symbols, nomenclature of physical quantities and formulations, conventions**; such as, common SI prefixes and symbols for multiples and sub-multiples; important constants; conversion factors; mathematical formulae; SI derived units (expressed in SI base units); SI derived units with special names; guidelines for using symbols for physical quantities, chemical elements and nuclides; guidelines for using symbols for SI units e.g. newton, pascal, joule, watt, hertz, kelvin, dimensional formulae of physical quantities
- (4) **explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis**; such as, need of accuracy, precision, errors and uncertainties in measurement; fundamental forces in nature gravitational, electromagnetic, strong and weak nuclear forces; and unification of forces; various laws such as laws of motion, friction, lubrication, conservation laws, change in velocity due to acceleration, acceleration due to gravity of earth, why a seasoned cricketer draws in her/his hands during a catch; isothermal, isobaric, isochoric and adiabatic processes; formation of beats due to interference of sound waves

- (5) **derives formulae and equations**, such as, dimensional formulae and dimensional equation; kinematic equations for uniformly accelerated motion; equation of path of a projectile; equation of motion of an object in a plane with constant acceleration, potential energy of a spring, proof of work- energy theorem for a variable force, work done by a torque, efficiency of Carnot engine, different harmonics in stretched strings/pipes; Bernoulli's equation, Equation for pressure of an ideal gas, equations for velocity, acceleration, energy of a particle executing SHM
- (6) **analyses and interprets data, graphs, and figures, and draws conclusion**; such as, motion in a plane; analysis of the function of time to identify periodic and non-periodic motion; behavior of a material from its stress-strain curve; isothermal and adiabatic processes from P-V curves; variation of resonance peak with damping from the graph of amplitude versus angular frequency
- (7) handles tools and laboratory apparatus properly; measures physical quantities using appropriate apparatus, instruments, and devices; such as, scales, vernier calipers, screw gauge, spherometer, beam balance, stop clock/watch, inclined plane, sonometer, resonance tube, an arrangement for determining Young's modulus of the material of a wire
- (8) **plans and conducts investigations and experiments to arrive at and verify the facts, principles, phenomena, relationship between physical quantities, or to seek answers to queries on their own**; such as, study the effect of detergent on surface tension of water; determine terminal velocity of a spherical body; study the effect of changing the mass of bob or length of pendulum, on its time period; study the factors affecting the rate of loss of heat of a liquid; find the coefficient of friction between surface of a moving block and that of a horizontal surface
- (9) **communicates the findings and conclusions** in oral/written/ICT form that shows critical thinking, such of plotting a suitable graph between load and extension for finding force constant of a helical spring
- (10) **exhibits creativity and out-of-the-box thinking in solving challenging Physics problems**; such as, minimum speed required by a motorcyclist at the uppermost position to perform a vertical loop in a death well in a circus; a pillar with distributed shape at the end support more load.
- (11) **applies concepts of Physics in daily life with reasoning while decision-making and solving problems**; such as, maximum possible speed of a car on a banked road; in which direction to hold the umbrella if rain is falling vertically and wind is blowing in certain direction; during blood transfusion the height at which the blood container be placed so that blood may just enter the vein through the needle inserted in vein; a spinning ball deviates from its parabolic trajectory; changing the tension in the wire of sitar for changing frequency of sound emitted by it takes initiative to learn about the newer researches, discoveries and inventions in Physics; such as, about space programme of India and other countries; research to increase the strength of a material, increase the efficiency of engines

- (12) recognises different processes used in Physics-related industrial and technological applications; such as, knowledge of strength of materials used for structural design of columns, beams and supports while designing a building; hydraulic machine for lifting heavy objects; knowledge about beats for tuning musical instruments
- (13) realises and appreciates the interface of Physics with other disciplines; such as, application of Doppler effect in medical science to study heart beats and blood flow in different parts of body; mechanism of conversion of heat into work for different heat engines; properties of materials in different branches of engineering
- (14) develops positive scientific attitude, and appreciates the role and impact of Physics and technology towards the improvement of quality of life and human welfare, such as, nuclear radiation techniques for diagnosis and treatment, nuclear power.
- (15) exhibits values of honesty, objectivity, respect for life, rational thinking, and freedom from myth and superstitious beliefs while taking decisions, etc.

CLASS 12 LEARNING OUTCOMES FOR PHYSICS

- (1) **recognises the concepts of Physics related to various natural phenomena**; such as, electrostatic force; electric and magnetic fields and flux; electrostatic potential; drift of electrons; electric current; resistance of materials; magnetic properties of materials; electromagnetic induction; reflection, refraction, interference, diffraction of light; formation of rainbow; nuclear fusion and nuclear fission.
- (2) **differentiates between certain physical quantities**; such as, between electric field and electric potential; electrical resistance and resistivity; potential difference and emf of a cell; interference and diffraction; wave and particle nature of light; e Nuclear fusion and nuclear fission; conductors and bad conductors or dielectrics
- uses International system of units (SI Units), symbols, nomenclature of physical quantities and formulations, conventions; such as, coulomb (C), farad (F), ampere (A), ohm (Ω), tesla (T), degree (°);
- (4) **explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis**; such as, force between charges, electric field and potential due to charges; force on charges in an electric field; forces on moving charges in a magnetic field, torque on a rectangular current loop in an uniform magnetic field; eddy currents; formation of secondary rainbow;; energy produced due to fusion, generation of emf by solar radiation.

- (5) **derives formulae and equations**, such as, electrostatic forces and fields due to charge distributions; potential energy of system of charges; torque on a dipole in uniform electric field; effective capacitance of combination of capacitors in series and in parallel; energy stored in a capacitor; magnetic field on the axis of a circular current loop; resonant frequency in series LCR circuit; thin lens formula, de Broglie wavelength; equations for nuclear fission and fusion, mass defect; fringe width in Young's double slit experiment
- (6) **analyses and interprets data, graphs, and figures, and draws conclusion**; such as, field due to a uniformly charged thin spherical shell is zero at all points inside the shell; hysteresis loop; direction of induced current in the figure; position of image in ray diagrams; fringe pattern due to diffraction at single slit; V-I characteristics of a p-n junction diode; effect of potential on photoelectric current and effect of frequency of incident radiation on stopping potential for a given photosensitive material; plot of binding energy per nucleon versus mass number;
- (7) handles tools and laboratory apparatus properly; measures physical quantities using appropriate apparatus, instruments, and devices; such as, an electroscope to detect charge on a body; power supplies; voltmeter; ammeter; multimeter; rheostat; galvanometer; meter bridge;; sonometer; travelling microscope; concave and convex lens, prism, glass slab
- (8) plans and conducts investigations and experiments to arrive at and verify the facts, principles, phenomena, relationship between physical quantities, or to seek answers to queries on their own; such as, verification of Ohm's law; determining specific resistance of a material; finding frequency of ac mains; study the image formation by concave and convex lens; determine refractive index of a liquid using a convex lens and a plane mirror; draw I-V characteristics curves of a p-n junction diode
- (9) **communicates the findings and conclusions** in oral/written/ICT form that shows critical thinking, such as, appropriately conveying the critical angle in internal reflection by drawing ray diagrams to describe it
- (10) **exhibits creativity and out-of-the-box thinking in solving challenging Physics problems**; such as, calculating the required range of variable capacitor of LC circuit of a radio for the radio to be able to tune over a given frequency range of broadcast band; assessing the depth of a pond in clear water using the knowledge of refractive index of water; calculating the energy released in fission or fusion process.
- (11) **applies concepts of Physics in daily life with reasoning while decision-making and solving problems**; such as, if a certain capacitance is required in a circuit across a certain potential difference then suggesting a possible arrangement using minimum number of capacitors of given capacity which can withstand a given potential difference; selecting the appropriate wire for doing wiring at home keeping in view all considerations;,
- (12) **takes initiative to learn about the newer research, discoveries and inventions in Physics**; such as, accelerators, thermistors, electrical properties of materials, India's atomic energy programme; research on the possibility of static electricity charging electronic devices; improving magnetic bottles to keep high energy plasma in fusion under control, newer designs of nuclear reactors

- (13) **recognises different processes used in Physics-related industrial and technological applications**; such as, using electrostatic shielding in protecting sensitive instruments from outside electrical influences; use of superconducting magnets for running magnetically levitated superfast trains; applications of optical fibers for transmission of optical signals; use of controlled chain reaction in nuclear
- (14) **realises and appreciates the interface of Physics with other disciplines**; such as, with Chemistry as various materials give rise to interesting properties in the presence or absence of electric field, making light sensitive cells using the applications of photoelectric effect; use of atomic and nuclear Physics in medicine, use of electromagnetic radiations in communication, use of optical phenomenon in entertainment.
- (15) develops positive scientific attitude, and appreciates the role and impact of Physics and technology towards the improvement of quality of life and human welfare
- (16) exhibits values of honesty, objectivity, respect for life, rational thinking, and freedom from myth and superstitious beliefs while taking decisions, etc.

CLASSES 11-12 COMMON LEARNING OUTCOMES FOR PHYSICS

As can be seen from the two lists of learning outcomes above, the basic LOs are the same for both the classes and the differences lie in the specific instances that have been taken from the content domain for illustrative purposes. In this document from here onwards, the following list of LOs will be referred to for both classes. It is important to note that LOs 7, 8 and 9 are specifically relevant to practical work prescribed in the Physics curriculum.

- LO1. Recognizes the concepts of Physics related to various natural phenomena
- LO2. Differentiates between certain physical quantities
- LO3. Uses International system of units (SI Units), symbols, nomenclature of physical quantities and formulations, conventions
- LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis
- LO5. Derives formulae and equations
- LO6. Analyses and interprets data, graphs, and figures, and draws conclusion
- LO7. Handles tools and laboratory apparatus properly; measures physical quantities using appropriate apparatus, instruments, and devices

- LO8. Plans and conducts investigations and experiments to arrive at and verify the facts, principles, phenomena, relationship between physical quantities, or to seek answers to queries on their own
- LO9. Communicates the findings and conclusions in oral/written/ICT form that shows critical thinking
- LO10. Exhibits creativity and out-of-the-box thinking in solving challenging Physics problems
- LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems
- LO12. Takes initiative to learn about the newer research, discoveries and inventions in Physics
- LO13. Recognises different processes used in Physics-related industrial and technological applications
- LO14. Realises and appreciates the interface of Physics with other disciplines
- LO15. Develops positive scientific attitude, and appreciates the role and impact of Physics and technology towards the improvement of quality of life and human welfare
- LO16. Exhibits values of honesty, objectivity, respect for life, rational thinking, and freedom from myth and superstitious beliefs while taking decisions, etc.

6. CONTENT DOMAIN SPECIFIC LEARNING OUTCOMES AND INDICATORS

The learning outcomes defined by NCERT are generic and broadly defined for the content defined in the curriculum. They articulate the disciplinespecific skills that students need to attain through learning different concepts in the syllabus. A clear understanding of the scope of these learning outcomes for each concept in the NCERT textbook chapters will be very helpful for both teachers and students in planning teaching and learning better. The following process has been followed to list out the content domain-specific learning outcomes (CLOs) and indicators for all the content units and textbook chapters.

Concepts discussed in the textbook chapters were mapped to key concepts under each content domain in the CBSE syllabus.

Relevant NCERT learning outcomes were identified for each key concept in the chapter.

Content domain-specific learning outcomes (CLO) were defined for the NCERT learning outcomes relevant for the chapter. The cognitive process in the NCERT learning outcome and the CLO are the same.

Each CLO was broken down into specific learning indicators called as 'indicator' which defines the specific skill or knowledge that a student needs to attain. The cognitive process addressed in indicators may be the same or lower than that addressed in CLO.

CLASS 11 CONTENT DOMAIN SPECIFIC LEARNING OUTCOMES AND INDICATORS

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
I. Physical world and measurement 2. Units and measurement	International system of units	LO3. Uses International system of units (SI Units), symbols, nomenclature of physical quantities and formulations, conventions	CLO01.Enumerates the International system of base and supplementary units	C1.Lists and defines international standards of units of measurement used for measurement of 7 base and 2 supplementary physical quantities
	Significant figures	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO02.Estimates precise experimental results using significant figures and rounding off the final results	C2. Defines and states the rules for writing significant figures as a result of a measurement
				C3. States the rules for rounding off uncertain digits of significant figures and for determining uncertainties in the results of calculations
	Dimensions of physical quantities	LO3. Uses International system of units (SI Units), symbols, nomenclature of physical quantities and formulations, conventions	CLO03.Identifies and applies the concept of dimensions, dimensional formulae and dimensional analysis techniques to write, validate and derive correct physical equations	C4. Defines dimensions of a physical quantity in terms of the exponents of fundamental units and expresses dimensions of common physical quantities used in the mechanics and heat

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
I. Physical world and measurement 2. Units and measurement	Dimensional formulae of physical quantities			C5. Defines dimensional formulae of a physical quantity in terms of fundamental units and explains how to write a dimensional equation if the dimensional formula of a physical quantity is known
	Applications of Dimensional analysis	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO04.Identifies and applies the concept of dimensions, dimensional formulae and dimensional analysis techniques to write, validate and derive correct physical equations	C6.Defines principle of homogeneity for dimensional equations and applies dimensional analysis technique to check the correctness of physical equations
II. Kinematics 3. Motion in a straight line	Kinematics as field of study of describing motion in Physics	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO05.Describes position, distance and displacement of a body in motion	C7.Defines path length or distance travelled by a body in reference to x- coordinate axis
				C8. Defines displacement of a body moving along a straight line
		LO6. Analyses and interprets data, graphs, and figures, and draws		C9. Plots graph the position and time of a body in motion and infer the nature of motion of a body from the shapes of position time
Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
--	--	---	--	--
		conclusion		graphs
II. Kinematics 3. Motion in a straight line	Position, path length and displacement	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO06.Explains average and instantaneous velocity	C10.Defines average velocity of a body and identifies average velocity as a slope of a tangent to the position- time graph of a body in motion
		LO6. Analyses and interprets data, graphs, and figures, and draws conclusion		C11.Plots and explains position-time graphs for a moving body depicting positive, zero and negative average velocity
	Position, path length and displacement	LO2. Differentiates between certain physical quantities	CLO06.Explains average and instantaneous velocity CLO06.Explains average and instantaneous velocity CLO06.Explains average and instantaneous velocity	C12.Defines and differentiates average speed from average velocity and solves numerical problems based on them
		cement LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on		C13.Defines instantaneous velocity of a body and recognises the slope of the tangent to the position-time graph at any instant of a body in motion as instantaneous velocity
		scientific basis	CLO07.Explains the concept	C14.Defines average

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
			of acceleration of a body in non uniform motion	acceleration in terms of rate of change in instantaneous velocities
II. Kinematics 3. Motion in a straight line Position, path length and displacement		LO6. Analyses and interprets data, graphs, and figures, and draws conclusion		C15.Plots and interprets position-time and velocity- time graphs to determine displacement, nature of acceleration and direction of motion of a body
	LO5. Derives formulae and equations	CLO08.Derives and explains kinematic equations of linearly accelerated motion	C16.Derives kinematic equations of motion using velocity-time graph method and calculus method for a body moving along a straight line with uniform acceleration	
	LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems	CLO09.Derives and explains kinematic equations of linearly accelerated motion	C17.Solves numerical problems involving the motion of the body along a straight line in uniform acceleration	
		CLO10.Appreciates the application of kinematic equations of linear motion to freely falling bodies	C18.Applies equations of straight-line motion for a freely falling body with appropriate cartesian coordinate sign conventions and solves numerical problems based on real-life	

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				situations
II. Kinematics 3. Motion in a straight line Average velocity and average speed Scalars and vectors		LO6. Analyses and interprets data, graphs, and figures, and draws conclusion		C19.Plots position-time; velocity-time and acceleration-time graphs for a body under free fall
	Average velocity	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO11.Defines and explains the relative velocity of one body with respect to another moving along straight lines	C20.Defines relative velocity of one body with respect to the second body with the second body being considered as a reference point of coordinate axes
	and average speed	LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems	CLO12.Defines and explains the relative velocity of one body with respect to another moving along straight lines	C21.Solves numerical problems based on relative velocities to determine the time taken to overtake, distance travelled before the overtake and instant when the two oppositely moving bodies crossover
	Scalars and vectors	LO4. Explains processes, phenomena and laws with the understanding of the relationship between	CLO13.Explains scalar and vector quantities and their mathematical operations	C22.Defines scalar and vector physical quantities with examples and explains the various vector operations

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		nature and matter on scientific basis		
		LO6. Analyses and interprets data, graphs, and figures, and draws conclusion		C23.Defines and represents graphically the position and displacement vectors for a given set of position vectors at different times of a body moving in a plane
II. Kinematics 3. Motion in a straight line	Vector operations	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis		C24.States triangle law and parallelogram law of vector addition for adding two or more vectors
	Resolution of vectors	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis		C25.Explains the resolution of vectors in a plane and in space in terms of two or more unit vectors
II. Kinematics 4. Motion in a plane	Motion in a plane	LO4. Explains processes, phenomena and laws with the	CLO14.States and derives the equations of a uniformly accelerated motion of a body in a plane using vectoral	C26.Defines average and instantaneous velocity of a body in motion in a plane in terms of unit vectors

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		understanding of the relationship between nature and matter on scientific basis	notations	C27.Defines average and instantaneous acceleration of the ratio of change in velocity vectors to time where velocity vectors are expressed in terms of unit vectors
		LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems		C28.Applies differential calculus to determine velocity and acceleration vectors from a given position vector expressed as a function of time
	Motion in a plane with uniform acceleration	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis		C29.Recognises that a motion in two dimensions can be treated as two simultaneous one-dimensional motions with constant accelerations along perpendicular directions
	Projectile motion	LO5. Derives formulae and equations	CLO15.Describes projectile motion and derives all equations related to projectile motion	C30.Derives the equations of motion for displacement and velocity along horizontal and vertical motions of the projectile motion
II. Kinematics	Projectile motion	LO5. Derives formulae and	CLO15.Describes projectile motion and derives all	C31.Derives the equations for total time of flight,

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
4. Motion in a plane		equations	equations related to projectile motion	maximum vertical height and horizontal range of the projectile
		LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems		C32.Solves problems based on real-life projectiles like jet of water projecting out of a fire engine pipe, food packets being dropped by a moving airplane, canon firing canon ball and a player kicking the football
	Uniform circular motion	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO16.Applies the concepts of vectors to explain the motion of a body along a	C33.Defines and describes uniform circular motion in terms of angular displacement and angular velocity of a body
		LO5. Derives formulae and equations	- circular path	C34.Derives a formula for centripetal acceleration in terms of angular velocity, radius and linear speed of a uniform circular motion
III. Laws of motion 5. Laws of motion	Newton's first law of motion	LO4. Explains processes, phenomena and laws with the	CLO17.States Newton's first law of motion and identifies the role of inertia in common	C35.States Newton's first law of motion

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
III. Laws of motion Mor 5. Laws of motion New New law Reference		understanding of the relationship between nature and matter on scientific basis	day-to-day experiences	
	Inertia	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis		C36.Describes the concept of inertia in a body and its role in getting a body to move and the factors on which it depends upon
	Momentum		CLO18.States Newton's first law of motion and identifies the role of inertia in common day-to-day experiences	C37.Defines linear momentum of a body in motion and recognises the role of force in the change in momentum
	Newton's second law of motion		CLO19.Explains Newton's second law of motion;	C38.States Newton's second law of motion in terms of the relation between the net external force acting on the body and rate of change in momentum produced in the body
	Reference frames		discovers its mathematical differential formulation	C39.Defines inertial and non- inertial reference frames based on the applicability of Newton laws of motion in them
	Impulse			C40.Defines impulse in terms

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
III. Laws of motion 5. Laws of motion				of a large variable force acting on the system for a very short time interval and establishes its relation with change in momentum using Newton's second law of motion
	Newton's third law of motion	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO20.States Newton's third law of motion and infers the Law of conservation of momentum from Newton's second and third laws	C41.Defines Newton's third law of motion and identifies the forces occurring in pairs as action-reaction forces using common examples
	Law of conservation of linear momentum	LO5. Derives formulae and equations		C42.States law of conservation of linear momentum and validates the law of conservation of momentum using Newton's second law of mathematical equation
	Applications of Law of conservation of linear momentum	LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems	CLO21.Applies the Law of conservation of momentum to the collisions of bodies in 1- and 2- dimensional motion	C43.Applies the law of conservation of linear momentum to study the forces and transfer of momentum during the collisions between two elastic balls moving along a

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				straight line and when moving in a plane (2 dimensions)
III. Laws of motion 5. Laws of motion	Equilibrium of bodies			C44.Defines translational equilibrium of a body and applies the rules of resolution of vectors to write equations of forces acting in a plane on a body in equilibrium
	Types of mechanical forces	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO22.Identifies common mechanical forces that act on a body at rest or motion	C45.Identifies forces like normal reaction, friction, buoyant forces and spring force as contact forces that act on two bodies in contact with each other
	Friction	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO22.Identifies common mechanical forces that act on a body at rest or motion	C46.Explains different types of friction and their formulations in terms of normal reaction and coefficient of friction
	Dynamics of Circular motion	LO11. Applies concepts of Physics	CLO23.Describes the dynamics of motion of a car	C47.Defines centripetal force on a body moving in a

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		in daily life with reasoning while decision-making and solving problems	along a circular track	circular path and identifies the importance of friction acting on a body during a circular motion
III. Laws of motion 5. Laws of motion	Banking of roads	LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems		C48.Applies rules of resolution of vectors to identify, and resolve forces acting on a car moving along a level and banked circular track and constructs the equations using Newton laws
	Free body diagrams and equations	LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems	CLO24.Writes and solves free body equations in mechanics	C49.Solves problems involving the body in equilibrium or in motion under the action of multiple forces using free body diagrams and equations using Newton's laws
IV. Work, energy and power 6. Work, energy and power	Scalar product of vector	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO25.Explains the multiplication of vectors using scalar product method	C50.Defines scalar product or dot product between two vector physical quantities, represents it graphically and states its properties
	Work energy theorem for	LO5. Derives formulae and	CLO26.Derives and explains work- energy theorem	C51.Derives the equation of work-energy theorem from

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
	constant force	equations		the equation of a uniformly accelerated motion and applies the theorem of work- energy to solve numerical problems
IV. Work, energy and power 6. Work, energy and power	Kinetic energy	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO27.Defines kinetic energy of a body in motion	C52.Defines kinetic energy in terms of scalar product between velocities, states its units, and dimensions and solves numerical problems based on it
	Work energy theorem for a variable force	LO5. Derives formulae and equations		C53.States and derives work- energy theorem for variable force and applies the theorem to solve numerical questions
	Potential energy	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO28.Describes the concept of the potential energy of a body in relation to conservative forces acting on a body	C54.Explains the meaning of conservative forces and recognises that potential energy is energy stored in a body when the work is done against a conservative force
	Potential energy	LO5. Derives formulae and	CLO29.Identifies spring force as a conservative force and	C55.Derives an expression for work done by the

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
	of a spring	equations	derives an expression for potential energy stored in a spring	conservative force of the spring due to its extension or compression
IV. Work, energy and power 6. Work, energy and power Put Cut Cut		LO6. Analyses and interprets data, graphs, and figures, and draws conclusion		C56.Explains and represents graphically the variation of potential energy and kinetic energy of the spring-block system as it moves back and forth.
	Energy forms	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO30.Identifies various forms of energy and states the law of conservation of energy	C57.Explains various energy forms like heat, electrical, chemical and nuclear energy and states the principle of conservation of energy in systems under the effect of both conservative and non- conservative forces
	Power		CLO31.Defines instantaneous mechanical power of a body	C58.Defines instantaneous power of a body as a limiting value of average power and solves numerical problems based on power consumed or dissipated by a body
	Collisions	LO5. Derives formulae and equations	CLO32.Explains collisions between two bodies moving along a straight line or in a plane	C59.Applies law of conservation of linear momentum to a collision process using Newton's second and third laws and

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
IV. Work, energy and power 6. Work, energy and power				derives formulae for final velocities of the bodies after an elastic collision between two bodies moving along a straight line and along a plane
V. Motion of system of particles and rigid body 7. Systems of particles and rotational motion	Center of mass	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO33.Defines and describes center of mass of a rigid body and derives formula for linear momentum of a system of particles	C60.Defines center of mass of a system of particles distributed in a 2 and 3- dimensional plane and explains the motion of center of mass in relation to change in position coordinates, velocity and acceleration of center of mass
	Vector product of two vectors	LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems	CLO34.Explains vector product of two vector quantities	C61.Defines vector product between two vector quantities giving the result as a vector and solves problems based on vector product between two vectors expressed using unit vectors
	Angular variables	LO4. Explains processes, phenomena and laws with the understanding of the relationship between	CLO35.Defines the various angular variables associated with a rigid body in rotational motion around a fixed axis	C62.Defines angular displacement, angular velocity, angular acceleration for a rigid body in rotational motion about a fixed axis
	Torque and	nature and matter on		C63.Defines torque as a

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
V. Motion of system of particles and rigid body 7. Systems of particles and rotational motion	angular momentum	scientific basis		moment of force acting on the body and angular momentum as the moment of linear momentum of the particle about a fixed axis rotating about a fixed point and establishes the relation between them
	Law of conservation of angular momentum	LO5. Derives formulae and equations	CLO35.Defines the various angular variables associated with a rigid body in rotational motion around a fixed axis	C64.Validates the law of conservation of angular momentum using the relation between the angular momentum of a system of particles and total torque about a fixed point
	Equilibrium of rigid bodies	LO1. Recognises the concepts of Physics related to various natural phenomena	CLO36.Recognises the conditions of mechanical equilibrium in a rigid body	C65.Recognises the essential conditions of equilibrium of rigid body as a constant linear momentum and angular momentum for translational and rotational equilibrium
	Center of gravity	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on	CLO37.Explains centre of gravity of a rigid body in terms of torques due to gravitational forces	C66.Defines center of gravity of a rigid body and solves problems based on a rigid body in equilibrium condition under the effect of gravitational forces by applying the principle of

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		scientific basis		moments and concept of center of gravity
V. Motion of system of particles	Kinetic energy of a body in rotational motion	LO5. Derives formulae and equations	CLO38.Defines moment of	C67.Derives an expression for the kinetic energy of a system of particles rotating around a fixed axis with a constant angular velocity
7. Systems of particles and rotational motion	Systems of rticles and rational motionLO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basismass of a rigid body is rotational motion and the two theorems rel moment of inertia of body about a fixed ax	mass of a rigid body in rotational motion and proves the two theorems related to moment of inertia of a rigid body about a fixed axis	C68.Defines moment of inertia as a rotational analogy of mass of a body in linear motion and states the formulae of the moment of inertia of some commonly used rigid bodies about a fixed axis of rotation	
V. Motion of system of particles and rigid body 7. Systems of particles and rotational motion	Kinematics of rotational motion of a rigid body	LO5. Derives formulae and	CLO39.States and derives kinematic equations of a rigid body and explains dynamics of rotational motion of a rigid body in	C69.Writes the rotational analogous equations of motion to linear equations for a body in uniform rotational motion and applies them to solve problems
	Work done in rotational motion	equations	terms of torque, work done and angular momentum about a fixed axis of rotation	C70.Derives formula for the work done in terms of the net torque causing angular displacement in rigid body and defines instantaneous power in terms of net torque

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				and angular velocity of the rotating rigid body
V. Motion of system of particles and rigid body 7. Systems of particles and rotational motion	Angular momentum in case of rotation about a fixed axis	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO40.Describes and differentiates angular momentum vector for a symmetric and asymmetric rigid body rotating about a fixed axis	C71.Identifies the two components of angular momentum for a particle rotating about a fixed axis: one component parallel and another component perpendicular to the fixed axis for symmetric and asymmetric bodies
	Law of conservation of angular momentum	LO5. Derives formulae and equations	CLO40.Describes and differentiates angular momentum vector for a symmetric and asymmetric rigid bodies rotating about a fixed axis	C72.States the law of conservation of angular momentum in terms of moment of inertia and angular velocity of the rigid body moving around a fixed axis
	Rolling motion	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO41.Defines and explains the rolling motion of a rigid body	C73.Defines rolling motion and derives the condition of rolling without slipping
VI. Gravitation	Kepler's Laws	LO4. Explains processes,	CLO42.States and explains Kepler's laws of planetary	C74.Explain Kepler's law of orbits and define foci, semi-

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
8. Gravitation		phenomena and laws with the understanding of the	motion	major and semi-minor axes for the elliptical planetary orbits around the Sun
		relationship between nature and matter on scientific basis	C75.Explains Kepler's areas and recognises t this law was based on observation that the sp the planet lowers as it away from the Sun dur revolution around the	C75.Explains Kepler's law of areas and recognises that this law was based on the observation that the speed of the planet lowers as it moves away from the Sun during its revolution around the Sun
VI. Gravitation 8. Gravitation				C76.States Kepler's law of periods and proves that Kepler's law of periods is a consequence of the law of conservation of angular momentum
Universal law of gravitation	LO4. Explains processes, phenomena and laws with the understanding of the relationship between	CLO43.States and explains Newton's Universal law of gravitation	C77.States Newton's law of gravitation writes its vectoral notation and solves problems based on the law of gravitation and the calculation of resultant gravitational force due to a system of mass particles	
	nature and matter on scientific basis		C78.Recognises that gravitational force due to a spherical shell on a mass particle nearby is just as if	

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				the entire mass of the shell is concentrated at its centre and that gravitational force due to a spherical shell at any point inside it is zero
		LO5. Derives formulae and equations		C79.Defines acceleration due to gravity and derives its formula using Newton's law of gravitation
A VI. Gravitation 8. Gravitation	Acceleration due to gravity	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO44.Describes and explains acceleration due to gravity and the factors on which it depends upon	C80.Derives formulae expressing acceleration due to gravity as a function of height from the surface of the planet and the depth inside Earth
	Gravitational potential energy	LO5. Derives formulae and equations	CLO45.Explains gravitational potential energy in relation to the conservative force of gravitation	C81.Derives the formula for gravitational potential energy as a work done in moving a mass particle from one position to another against gravitational force and recognises that its value rises to a maximum value of zero at infinity location from Earth's surface and is negative at all points closer to Earth

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
VI. Gravitation		LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems		C82.Solves problems based on the calculation of gravitational potential energy due to a system of mass particles
8. Gravitation	Escape speed	LO5. Derives	CLO46.Explains escape speed and derives it from the principle of conservation of energy	C83.Defines escape speed of a body and derives its formula for escape speed as a function of acceleration due to gravity and radius of the planet
	Earth's satellites	formulae and equations	CLO47.Describes the dynamics of the motion of Earth satellites by applying Kepler's laws	C84.Defines the orbital speed of a satellite and derives formulae for orbital speed, its time period and its total energy by using Kepler's laws
VII. Properties of	Elastic and plastic bodies	LO2. Differentiates between certain physical quantities	CLO48.Differentiates between rigid, elastic and plastic bodies	C85.Defines and differentiates between rigid, elastic and plastic bodies
9. Mechanical properties of solids	Elastic behaviour of solids	LO4. Explains processes, phenomena and laws with the understanding of the relationship between	CLO49.Explains elastic behaviour in solids	C86.Defines deforming and restoring forces that occur in an elastic body and describes the effect of restoring forces on rigid bodies that enable the body to regain original

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		nature and matter on		shape and size
	Stress and strain	Scientific basis	CLO50.Describes and	C87. Defines and states formulae and units for each of three types of stresses and strains produced in a body under the effect of deforming force
VII. Properties of bulk matter 9. Mechanical properties of solids	Elastic behaviour of solids	LO6. Analyses and interprets data, graphs, and figures, and draws conclusion	explains different types of stresses and corresponding strains produced in a body	C88. States Hooke's law and identifies the condition under which it is applicable and explains the stress vs strain graph in terms of elastic behaviour of the solid under the effect of deforming force
Elastic	Elastic moduli	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO51.Describes elastic moduli of various bodies with different materials, elastic behaviours and shapes	C89. Defines Young's modulus of elasticity, Shear modulus of elasticity and Bulk modulus of elasticity and states units and dimensions of each of the elasticity moduli
	Elastic potential energy	LO4. Explains processes, phenomena and laws with the understanding of the	CLO52.Explains and derives elastic potential energy stored in a stretched wire	C90. Defines elastic potential energy in terms of work done against the deforming force in increasing the length of a wire through unit value and

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		relationship between nature and matter on scientific basis		derives a formula for elastic potential energy stored in a stretched wire
VII. Properties of bulk matter 9. Mechanical properties of solids	Applications of elastic behaviour of materials	LO15. Develops positive scientific attitude, and appreciates the role and impact of Physics and technology towards the improvement of quality of life and human welfare	CLO53.Appreciates the applications of Elastic behaviour of materials	C91. Takes the initiative to understand the reason for the use of I-shaped pillars in the construction of bridges; suitable specifications of rope used in the cranes to lift heavy loads; designs of the cross-sectional shapes of the load-bearing beams and columns used in the constructions of bridges and buildings and why the pillars and columns with distributed shapes are better in load distribution than round shaped pillars using the principle of elasticity
	Pressure	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO54.Defines fluids and explains pressure experienced in fluids	C92. Defines average pressure exerted by fluid on a surface and states its units and dimensions
	Pascal's Law	LO5. Derives		C93. States Pascal's law and

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		formulae and equations		proves it qualitatively
	Fluid pressure	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO55.Explains the effect of	C94. Identifies that the pressure of a liquid column depends upon the height of the column, density of fluid and acceleration due to gravity
VII. Properties of bulk matter 9. Mechanical	Atmospheric pressure		gravity on fluid pressure	C95. Defines gauge pressure at a point inside the liquid and atmospheric pressure and describes the working of a barometer and manometers
properties of solids	Hydraulic machines	LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems	CLO56. Describes and explains hydraulic machines based on Pascal's law	C96. Explains the working of hydraulic lift and brakes by applying Pascal's law
	Streamlines	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO57. Explains the properties, laws and mathematical equations followed during fluid flow	C97. Describes the characteristics of streamlines during a fluid flow and states the equation of continuity for incompressible fluids in flow

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
VII. Properties of bulk matter 9. Mechanical properties of solids	Bernoulli's Theorem	LO5. Derives formulae and equations		C98.States Bernoulli's theorem and derives Bernoulli's theorem using work energy theorem for the flow of incompressible and steady flow of fluids
	Torricelli's law	LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems		C99.States Torricelli's law to define the speed of efflux of fluid from an open tank and derives Torricelli's Law using Bernoulli's theorem and describes the applications like venturimeter
VII. Properties of bulk matter	Applications of Bernoulli's Theorem	LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems	CLO57. Explains the properties, laws and mathematical equations followed during fluid flow	C100.Solves problems based on Bernoulli's theorem and its applications
10. Mechanical properties of fluids	Viscosity	LO3. Uses International system of units (SI Units), symbols, nomenclature of physical quantities and formulations, conventions	CLO58.Explains the viscosity of fluids in terms of fluid friction	C101.Defines coefficient of viscosity as the ratio of shear stress and strain rate and states the units, formula and dimensions of coefficient of viscosity

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
VII. Properties of bulk matter 10. Mechanical properties of fluids	Stoke's law	LO5. Derives formulae and equations		C102.States the viscous force experienced by a body moving through a fluid in the form of Stoke's law and derives a formula for the terminal velocity of a raindrop falling through the air using Stokes's law and force of gravity
	Surface tension			C103.Defines surface tension as the property of liquid in terms of surface energy per unit area and surface force per unit length and derives its formula based on qualitative principles of Energy conservation
	Angle of contact	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis		C104.Defines the angle of contact between a liquid and a solid surface and recognises the dependency of the angle of contact on the surface tension for a given pair of liquid and solid surfaces in contact
	Surface energy	LO5. Derives formulae and equations	CLO59.Explains surface tension as surface property of liquids only	C105.Proves mathematically using the principles of surface tension and surface energy that pressure inside a

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				liquid drop and a bubble are always more than pressure outside them
	Capillarity			C106.Defines capillarity and derives an expression for the height of rise of a liquid through a capillary tube due to surface tension
	Temperature and heat	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO60.Explains and differentiates between heat and temperature of a body	C107.Defines heat and temperature and states the various units for the measurements of temperature
VII. Properties of bulk matter 11. Thermal properties of matter	Ideal gas equation	LO5. Derives formulae and equations		C108.States Boyle's law and Charles' law for ideal gases and combines them to derive the ideal gas equation for ideal gases
	Thermal expansion	LO3. Uses International system of units (SI Units), symbols, nomenclature of physical quantities and formulations,	CLO61.Explains thermal expansion in substances and identifies linear, superficial and cubical expansions	C109.Defines linear expansion, superficial expansion and cubical expansion as changes in corresponding configurations of the body due to heat exchanges

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		conventions		
		LO5. Derives formulae and equations		C110.Defines and derives a mathematical relation between coefficients of linear, superficial and volume expansion and solves problems based on the coefficient of expansivity and thermal stress
VII. Properties of bulk matter 11. Thermal properties of matter	Specific heat capacity	LO3. Uses International system of units (SI Units), symbols, nomenclature of physical quantities and formulations, conventions	CLO62.Defines heat capacity and specific heat capacity of a substance and states its importance in the amount of heat exchanged by a body to change its temperature	C111.Defines specific heat capacity, heat capacity and molar specific heat capacity of a substance and states their units, dimensions and formulae
	Calorimetry	LO11. Applies concepts of Physics in daily life with reasoning while decision-making and solving problems		C112.States the principle of calorimetry and solves problems based on heat exchanges and the principle of calorimetry
	Change of state	LO6. Analyses and interprets data, graphs, and figures, and draws conclusion	CLO63.Explains the process of change of state and describe the heat exchanges during the process	C113.Describes the process of change of state from ice to water to steam as heat is absorbed, using a graph between temperature versus

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				time and defines melting, vaporisation, freezing and condensation
Laten	Latent heat			C114.Defines latent heat of fusion and vaporisation, states the units, dimensions and formula of latent heat and solves problems based on them
VII. Properties of bulk matter 11. Thermal	VII. Properties of bulk matter Heat transfer 11. Thermal	LO4. Explains processes, phenomena and laws with the		C115.Describes the three modes of heat transfer as conduction, convection and radiation
properties of matter	Black body radiation	understanding of the relationship between nature and matter on scientific basis	CLO64.Explains the mechanisms of heat transfers from one body to another through conduction, convection and radiation	C116.Explains that black bodies are good absorbers and good radiators of heat and describes blackbody radiation as a function of the wavelength of radiation emitted at different temperatures of the blackbody using a graphical plot
	Heat radiation	LO6. Analyses and interprets data, graphs, and figures, and draws conclusion		C117.States and explains the importance of Wien's displacement law, and Stefan Boltzmann's law and recognises the relation

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				between the rate of heat energy emitted to the temperature of the body and Newton's law of cooling
	Concept of heat and Thermal equilibrium	I 04. Evolutions	CLO65.Describes the history of the concept of heat	C118.Defines thermodynamics as a branch of Physics that deals with the concept of heat and conversion of heat into other forms of energy involving macroscopic variables of system
VIII. Thermodynamics 12. Thermodynamics	Zeroth law of thermodynamics	processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO66.States and explains Zeroth law of thermodynamics	C119.States and explains Zeroth's law of thermodynamics and illustrates thermal equilibrium attained by two systems separated by an adiabatic wall or a diathermic wall
	Heat, Internal energy and work		CLO67.Describes and explains the three important thermodynamic variables as heat, internal energy and work done	C120.Defines internal energy as a macroscopic thermodynamic variable in terms of molecular kinetic and potential energy of the system
	LO1. Recog	LO1. Recognises the concepts of Physics		C121.Identifies pressure, volume, internal energy and

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		related to various natural phenomena		temperature as state variables of a thermodynamic system whereas heat and work done are not state variables
VIII. Thermodynamics 12.	First law of thermodynamics	LO6. Analyses and interprets data, graphs, and figures, and draws conclusion	CLO68.States and explains the first law of thermodynamics	C122.States first law of thermodynamics and explains that while heat exchanges and work done on the system is path dependent, the difference between the amount of heat exchanged and work done is path independent
Thermodynamics	Specific heat capacity	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO69.Describes and explains specific heat capacity and molar specific	C123.Defines heat capacity, specific heat capacity and molar specific heat capacity of a solid states their units and dimensions and derives the relation between molar specific heat capacity and 3R
		LO5. Derives formulae and equations	heat of matter	C124.Defines specific heat capacity at constant volume and specific heat capacity at constant pressure and derives the expression for the difference between specific heat capacity at

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				constant pressure and specific heat capacity at constant volume as equal to universal gas constant R
VIII. Thermodynamics 12. Thermodynamics	Second law of thermodynamics	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO70.States and explains the second law of thermodynamics	C124.States Kelvin Planck's statement and Clausius's statement of the second law of thermodynamics
	Reversible and irreversible processes	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO71.Explains the working principle of an ideal Carnot engine	C125.Defines reversible and irreversible thermodynamic processes
IX. Behaviour of perfect gases and kinetic theory of gases 13. Kinetic theory	Molecular nature of matter	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO72.Explains Dalton's atomic theory of matter, lists its postulates and describes the properties of different states of matter	C126.States the main features of Dalton's atomic theory of matter, explains Gay Lussac's Law and the atomic nature of solids, liquids and gases

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
IX. Behaviour of perfect gases and kinetic theory of gases 13. Kinetic theory	Behaviour of gases	LO6. Analyses and interprets data, graphs, and figures, and draws conclusion	CLO73.Describes and explains the behaviour of gases basis the gas laws	C127.States the ideal gas equation in terms of pressure, volume, absolute temperature and Boltzmann constant and plots the graphical representations of gas equations as a function of pressure for ideal gases and real gases
	Gas Laws			C128.States Boyle's law and Charles's law for ideal gases and plots P versus V and V versus T for real gases
	Gas Laws	LO5. Derives formulae and equations		C129.Derives Dalton's law of particle pressures for a mixture of non-reacting gases from ideal gas equations and solves problems based on gas equations and gas laws
	Kinetic theory of gases	LO5. Derives formulae and equations	CLO74.States kinetic theory of gases and uses the theory to explain the pressure exerted by gas molecules and its temperature	C130.States the postulates of the kinetic theory of gases and derives an expression for pressure exerted by gas enclosed in a container in terms of number density, mean squared velocity and mass of the gas molecules

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				C131.Derives the expression relating pressure, volume and internal energy of the gas; kinetic energy of the gas molecules and Dalton's law of particle pressures for a mixture of non-reacting gases using kinetic theory
IX. Behaviour of perfect gases and kinetic theory of	IX. Behaviour of perfect gases and kinetic theory of gases 13. Kinetic theory Law of equipartition of energy		CL075.States and explains	C132.Expresses the average energy of monoatomic and diatomic gas molecules, using all the components of kinetic energies, one each for its degrees of freedom
gases 13. Kinetic theory		LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	energies for gas molecules with varying degrees of freedom	C133.States the law of equipartition of energy for ideal gases and recognises that as per the Law of equipartition of energy, each energy mode contributes equal amounts to the average energy of gas molecule
	Specific heat capacity	LO5. Derives formulae and equations	CLO76.Describes specific heat capacities of gases, solids and water and states their values in terms of universal gas constant	C134.Derives the value of molar specific heat capacity at constant volume and pressure and their ratio for monoatomic, diatomic and polyatomic gases

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
IX. Behaviour of perfect gases and kinetic theory of gases 13. Kinetic theory M	Specific heat capacity	LO5. Derives formulae and equations	CLO76.Describes specific heat capacities of gases, solids and water and states their values in terms of universal gas constant	C135.Uses the law of equipartition of energies to determine the specific heat capacities of solids and derives the value of the specific heat capacity of water by using the law of equipartition of energy
	Mean free path		CLO77.Defines mean free path of gas molecules based on the kinetic theory of gases	C136.Defines and derives a formula for the mean free path for free gas molecules using the kinetic theory of gases
	Doniedie ond	L01. Recognises the concepts of Physics related to various natural phenomena L05. Derives formulae and equations	CL078.Describes periodic	C137.Defines periodic and oscillatory motion and defines their time periods and frequencies and their relationship
X. Oscillations and waves 14. Oscillations	motions		common examples and states suitable equations of motion	C138.Proves qualitatively that a sum of sine and cosine functions represent a periodic motion whereas an exponential and a log function represent a non- periodic motion
	Simple harmonic motion	LO4. Explains processes, phenomena and laws	CLO79.States the equations governing the displacement, velocity and acceleration of a	C139.Defines phase constant, time period, amplitude and angular frequency for a body

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
X. Oscillations and waves Simple hamotion are Uniform or motion 14. Oscillations Velocity a accelerati SHM Force law Energy in		with the understanding of the relationship between nature and matter on scientific basis	body in simple harmonic motion	in simple harmonic motion and compares the graphical plots of motion of two bodies in simple harmonic motion with different amplitudes, phase difference and time periods
	Simple harmonic motion and Uniform circular motion	L05. Derives formulae and	CLO79.States the equations governing the displacement, velocity and acceleration of a body in simple harmonic motion	C140.Writes the equations of motion for the perpendicular projection on the diameter of uniform circular motion and recognises their motions as simple harmonic motion
	Velocity and acceleration in SHM			C141.Derives the equations for displacement, velocity and acceleration of the body in SHM and plots their graphs with respect to time
	Force law and Energy in SHM	equations	CLO80.Explains the energy and the force law of the body in SHM	C142.Derives the expression for the restoring force acting on the body, kinetic energy, potential energy and total energy of the body in SHM and represents graphically the variation of kinetic and potential energy of simple harmonic oscillator as a function of time and position

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
	Illustrative examples of bodies in SHM			C143.Proves that the motion of two springs attached on either side of a block and fixed supports in a horizontal plane execute SHM
X. Oscillations and waves 14. Oscillations	Illustrative examples of bodies in SHM	LO5. Derives formulae and equations	CLO81.Identifies a few examples of bodies in SHM and derives their equations of motion and time periods	C144.Proves that loaded spring in a horizontal plane and a simple pendulum oscillate in simple harmonic motion and derive expressions for their time periods
X. Oscillations and waves 15. Waves	Wave motion	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO82.Describes the concept of wave motion with examples	C145.Defines wave motion as a mode of energy transfer, defines mechanical, electromagnetic and matter waves and explains the propagation of disturbance through a mechanical medium in terms of changes in densities and pressures in small increments layer by layer
	Transverse and longitudinal waves	LO2. Differentiates between certain physical quantities	CLO83.Explains the characteristics of transverse and longitudinal wave motions with examples	C146.Defines transverse and longitudinal wave motion and explains the propagation of disturbances through a medium as a series of crests and troughs or compressions

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				and rarefactions
X. Oscillations and waves Displacement equation for progressive of the second seco	Displacement equation for progressive waves	LO6. Analyses and interprets data, graphs, and figures, and draws conclusion	CLO84.Writes and explains the displacement equations for progressive waves	C147.Defines progressive wave motion, writes its displacement equation using a sinusoidal function and plots a sinusoidal graph to depict the travelling progressive wave
	Displacement equation for progressive waves		CL084.Writes and explains the displacement equations for progressive wavesC148.Identifies and e amplitude, phase and number using the progressive wave eq and derives the expr of the time period ar angular frequency u displacement equati progressive wave	C148.Identifies and defines amplitude, phase and wave number using the progressive wave equation and derives the expressions of the time period and angular frequency using the displacement equation of progressive wave
	Velocity of	LO5. Derives formulae and equations	CLO85.Derives the	C149.Derives the expression for the velocity of a progressive wave and the formula for the speed of wave
	progressive waves		expressions for velocity of travelling progressive waves	C150.Derives a formula for the speed of sound through gases and solid medium in terms of elasticity modulus
				C151.Derives the Newton
Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
---	------------------------------------	---	--	---
				formula for the speed of sound in air and applies Laplace's correction
X. Oscillations and waves 15. Waves	Superposition of progressive waves		CLO86.States the principle of superposition of mechanical waves and derives the equations of resultant wave	C152.States the principle of superposition of waves and derives a mathematical equation describing the resultant wave due to the superposition of two harmonic progressive waves
	Reflection of waves	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on	CLO87.Describes the reflection of progressive waves from rigid and non- rigid boundaries	C153.Explains why the amplitude of resultant wave at the position of rigid boundary is zero and that due to reflection from a non- rigid boundary, the superimposed wave has double the amplitude at the position of the boundary and writes the mathematical equations for the reflected waves at rigid and non-rigid boundaries
	Standing waves	Scientific dasis	CLO88.Defines and explains standing waves produced due to the reflection of waves by two boundaries	C154.Defines standing or stationery waves that are formed due to reflection by two boundaries and derive mathematical equations to represent standing waves

Unit and Chapter	Key concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
X. Oscillations and	X. Oscillations and		C155.Derives the formu normal modes for stand waves produced in stret strings and for normal r for standing waves prod in air column in a closed	C155.Derives the formulae of normal modes for standing waves produced in stretched strings and for normal modes for standing waves produced in air column in a closed pipe
waves 15. Waves	Formation of beats	LO5. Derives formulae and equations	CLO89.Demonstrates and explains the formation of beats due to superposition of sound waves of slightly different frequencies	C156.Defines beats and beat frequency and proves mathematically using the superposition principle that beat frequency is the difference in frequencies of the constituent superimposing progressive waves

CLASS 12 CONTENT DOMAIN SPECIFIC LEARNING OUTCOMES AND INDICATORS

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		LO1. Recognises the concepts of Physics related to various natural phenomena		C1. Recognises two types of charges based on frictional electrostatic phenomena and infer the properties of charges
	Electric charges	LO13. Recognises different processes used in Physics- related industrial and technological applications	CLO1.explain origin, types and properties of electric	C2 Explains earthing and its importance in the household circuits
I. Electrostatics 1. Electric Fields		LO2. Differentiates between certain physical quantities	charges	C3. Differentiates between conductors and insulators based on the movement of charges
		LO1. Recognises the concepts of Physics related to various natural phenomena		C4. Elaborates quantization, additivity and conservation of charge
	Coulomb's Law	LO1. Recognises the concepts of Physics related to various natural phenomena	CLO2.derive and apply Coulomb's law to calculate forces due to one/multiple charges	C5. Derives and states Coulomb's law in vector form
		LO10. Exhibits creativity and out-		C6. Applies Coulomb's law of electrostatics and Newton's

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		of-the-box thinking in solving challenging Physics problems		law of gravitation to compare the forces acting between a proton and an electron
I. Electrostatics	Coulomb's Law	LO10. Exhibits creativity and out- of-the-box thinking in solving challenging Physics problems	CLO2.derive and apply Coulomb's law to calculate forces due to one/multiple charges	C7. Appreciates superposition principle of electrostatics force and apply Coulomb's law to calculate forces due to multiple charges
		LO5. Derives formulae and equations	CL03.deduce electric field using electrostatic force and explain the properties of field lines CL03.deduce electric field using electrostatic force and explain the properties of field lines CL03.deduce electric field using electrostatic force and explain the properties of field lines CL03.deduce electric field using electrostatic force and explain the properties of field lines CL03.deduce electric field using electrostatic force and explain the properties of field lines	C8. Infers the inter-relation between electric field and electrostatic force and explain electric field as a special case of force using mathematical formula
1. Electric Fields	Electric field	LO4. Explains processes, phenomena and laws with the		C9. Draws and explains the significance of electric field lines in terms of intensity and direction of electric field
		understanding of the relationship between nature and matter on scientific basis		C10.Appreciates the properties of electric field lines in terms of its direction, etc
	Electric dipole	LO5. Derives formulae and	CLO4. understand electric dipole and apply Coulombs law to calculate electric field	C11.Explains the formation of an electric dipole and derive a general vector formula for a

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		equations	and torque due to electric dipole	dipole moment. C12.Derives the electric field of a dipole in its equatorial plane and axial plane at a distance r from the dipole center
				C13.Derives the equation for torque experienced by a dipole in a uniform electric field
	Electric flux	LO5. Derives formulae and	LO5. Derives formulae and equations CLO5.explain and apply electric flux using a simple charge placed inside a surface	C14.Elaborates electric flux using a surface diagram and derive the relation between flux and electric field
I. Electrostatics		equations		C15.Explain Gauss law and derive a general equation for Gauss law
1. Electric Fields	Gauss law	LO11. Applies concepts of Physics in daily life with reasoning while decision- making and solving problems	CLO6. apply Gauss law to calculate electric filed when the source distribution has simple symmetry	C16.Applies Gauss law to calculate electric field due to thin infinitely long straight wire, plane sheet and spherical shell of a particular density
I. Electrostatics 2. Electrostatic	Electric potential energy	LO4. Explains processes, phenomena and	CL07.Describes the concept of electric potential energy and	C17.Describes electric potential energy as a difference between two points

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
potential and capacitance		laws with the understanding of the relationship between nature and matter on scientific basis	electric potential	and as negative of work done by an electric field and identifies the path independence of the work done by electrostatic field
	Electric potential	LO5. Derives formulae and equations	iates in tities	C18.Describes the concept of electric potential as derived from electric potential energy for a unit positive charge and derives the expression for the electric potential at a point due to the electrostatic field of a point charge
		LO2. Differentiates between certain physical quantities		C19.Compares the variation of electric field and electric potential due to a point charge with the distance from the charge and solves problems related to electric potential and electric potential energy
I. Electrostatics 2. Electrostatic potential and capacitance	Electric potential due to a dipole	LO5. Derives formulae and equations	CLO8.Derives the expression for the electric potential due to an electric dipole, system	C20.Derives the expression for the electric potential due to an electric dipole along axial and equatorial line
	Electric potential due to continuous bodies	LO5. Derives formulae and equations	of charges, charged spherical shell and a sphere	C21.Explains how to derive the electric potential due to a system of discrete point

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				charges and a continuous charge distribution and derives the expression for the electric potential within, on the surface of and outside a uniformly charged thin spherical shell and solid sphere
	Equipotentia l surface	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO9.Describes the concept of equipotential surfaces	C22.Describes the concept of an equipotential surface and explains the relationship between electric field and rate of change of electric potential
	Electric potential energy	LO5 Derives	CLO10.Derives the expression for the electric potential energy of a system of point charges	C23.Derives the expression for the electric potential energy of a system of point charges and a dipole in an external electric field
I. Electrostatics 2. Electrostatic potential and capacitance	Electrostatic s of solid conductors	LO5. Derives formulae and equations	CLO11.Explains electrostatic properties of solid conductors and a dielectric	C24.Explains and derives for an expression of electrostatic field and electric potential inside a conductor, on its surface and outside the charged conductor and explains the principle behind

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				electrostatic shielding
	Electrostatic s of solid conductors	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis		C25.Explains how a net dipole moment is developed due to an external electric field in the materials made of polar molecules and non-polar molecules
Capacitors and capacitance Parallel plate capacitor Potential energy in a capacitor	Capacitors and capacitance	LO5 Derives	CL012.Defines a capacitor	C26.Defines capacitance for a system of two conductors charged with equal and opposite charges and derives the expression for the capacitance of a parallel plate capacitor with vacuum and a dielectric between the plates
	Parallel plate capacitor	formulae and equations	capacitance for parallel plate capacitor and related terms for dielectrics	C27.Derives the expression for equivalent capacitance for capacitors connected in series and in parallel
	Potential energy in a capacitor			C28.Derives the expression for energy stored in a capacitor and energy density for the electric field inside a parallel plate capacitor

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
II. Current electricity	Ohms Law	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	nd ic CLO13.States and explains Ohms law in conductors	C29.States Ohm law and gives its formula in terms of current, resistance, voltage, current density and electric field
		LO5. Derives formulae and equations		C30.Derives formula for drift velocity, recognises conductivity and mobility of the charge carriers and identifies the limitations of Ohm's law
3. Current electricity	ent ity LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	C31.Defines resistivity of materials, states its formula and identifies its dependence on temperature of the material		
	Electrical energy and power	LO4. Explains processes, phenomena and laws with the understanding of	CL015.Describes the power loss in a conductor carrying current	C32.Defines energy dissipated and power consumed through a conductor of resistance R and carrying current I

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		the relationship between nature and matter on scientific basis		
	Cells, emf and potential difference	LO5. Derives formulae and equations	CLO16.Defines and differentiates between emf and potential difference across a cell	C33.Defines electromotive force across a cell in an open circuit and differentiates it from potential difference across a cell in a closed circuit and derives the relation between them when a current I is drawn by an external resistor connected across a cell
u. Carros t		LO5. Derives formulae and equations	CLO17.Derives and describes	C34.Recognises the cells connected in series and parallel combination and derives equivalent emf across multiple cells connected in series and in parallel
electricity 3. Current electricity	Combination of cells	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	the equivalent emf across a combination of cells connected in series and parallel	C35.Identifies the equivalent internal resistances across a combination of multiple cells connected in series and in parallel in an electric circuit

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
	Kirchhoff's rules	LO11. Applies concepts of Physics in daily life with reasoning while decision- making and solving problems	CLO18.States and explains Kirchhoff's rules across electric circuits	C36.States the two Kirchhoff's rules: Junction rule and Loop rule for electric circuits and applies the rules for solving electric circuit problems
	Wheatstone' s bridge	LO7. Handles tools and laboratory apparatus properly; measures physical quantities using appropriate apparatus, instruments, and devices	CLO19.Describes the principle and working of each of applications of Kirchhoff's rules, that is, Wheatstone bridge	C37.Describes the working principle of Wheatstone bridge and using Kirchhoff's rules derive the balanced condition of the bridge
III. Magnetic effects of current and magnetism 4. Moving charges and magnetism	Magnetic force of moving charges and current carrying conductor	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific	CLO20.Explains magnetic Lorentz force on a charge moving in magnetic field	C38.Defines magnetic Lorentz force on a charge moving with velocity v in magnetic field B and identifies its direction using Fleming's left-hand rule and extrapolates the definition to identify the magnetic force on a current- carrying element in magnetic field
III. Magnetic effects of current	Motion in combined electric and magnetic	basis	CLO21.Describes the path followed by charged particles projected in the region under	C39.Explain the nature of the path followed by a charged particle projected with a

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
and magnetism 4. Moving charges and magnetism	fields		the combined effect of electric and magnetic fields	velocity v in a magnetic field and recognise how the shape of the path followed by the moving charge depends upon its angle of projection into the magnetic field
		LO11. Applies concepts of Physics in daily life with reasoning while decision- making and solving problems		C40.Identifies the two applications of motion of charged particles under the combined effect of electric and magnetic fields as velocity selector and the cyclotron and describes their working principle and derives the related equations
	Biot Savart Law	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO22.States Biot Savart's law and describes the magnetic field produced by current element and a current carrying loop	C41.Identifies the current- carrying element as a vector source of magnetic field and states Biot Savart's law to describe the nature of magnetic field produced by a current-carrying element
	Biot Savart Law	LO11. Applies concepts of Physics in daily life with reasoning while decision- making		C42.Applies Biot Savart's law to the current-carrying loop to determine the magnetic field produced along its axis and at the center of the loop and

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		and solving problems		identifies the factors on which it depends upon
III. Magnetic effects of current and magnetism 4. Moving charges and magnetism	Ampere's circuital	CLO23.States Ampere's circuital law and applies it to determine the magnetic field	C43.States Ampere's circuital law and recognises it as an alternative to Biot Savart law to determine magnetic field due to current carrying sources	
		LO11. Applies concepts of Physics in daily life with reasoning while decision- making and solving problems	due to an infinitely long current-carrying conductor	C44.Applies Ampere's circuital law to determine magnetic field due to infinitely long current carrying wire and lists the various features of this magnetic field
	The solenoid and	LO5. Derives	CLO24.Describes the current- carrying solenoid and toroid	C45.Defines a current- carrying solenoid and applies Ampere's circuital law to derive magnetic field along its axis, outside it and at its end
	toroid	equations	and derives magnetic fields produced due to them	C46.Defines a current- carrying toroid and applies Ampere's circuital law to derive magnetic field along its axis and outside it

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
	Force between two parallel current carrying conductors	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO25.Explains the forces exerted by a pair of parallel current-carrying wires on each other and defines one ampere of current	C47.Explains why forces of interaction exist between a pair of parallel or antiparallel current-carrying wires placed nearby and identify these forces as action- reaction pair
III. Magnetic effects of current and magnetism	Force between two parallel current carrying conductors	LO5. Derives formulae and equations	CLO25.Explains the forces exerted by a pair of parallel current-carrying wires on each other and defines one ampere of current	C48.Derives the formula for forces between a pair of parallel current-carrying wires and recognises that parallel current-carrying wires attract whereas anti- parallel current-carrying wires repel each other and use this formula to define the magnitude of one Ampere of current
4. Moving charges and magnetism	Torque on current carrying loop	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO26.Describes the torque acting on a current-carrying loop placed in a magnetic field and identifies it as equivalent to a magnetic dipole placed in an external magnetic field	C49.Explains why a current- carrying loop placed in an external magnetic field experiences a net zero force but a non-zero net torque and derives the formula for the net torque and identifies its direction

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		LO1. Recognises the concepts of Physics related to various natural phenomena		C50.Recognises a current- carrying loop as a magnetic dipole, compares its nature and behaviour with an electric dipole (a pair of equal and opposite charges) and defines the magnetic dipole moment of the current-carrying loop as well as that due to a revolving charge
	The moving coil galvanometer	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO27.Describes the construction and working principle of moving coil galvanometer and takes the initiative to convert an MCG	C51.Describes the construction and working principle of a moving coil galvanometer, derives the formulae for deflection produced due to the flow of current I through it and states the current and voltage sensitivities of the MCG
 III. Magnetic effects of current and magnetism 4. Moving charges and magnetism 	The moving coil galvanometer	LO7.Handles tools and laboratory apparatus properly; measures physical quantities using appropriate apparatus, instruments, and devices	into a voltmeter and an ammeter and use it appropriately for the measurements of voltages and currents in an electric circuit	C52.Modifies a moving coil galvanometer into an ammeter and a voltmeter to use it for the measurement of currents and voltages in an electric circuit
III. Magnetic	Bar magnet and its	LO4. Explains	CLO28.Describes a bar	C53.Identifies a bar magnet

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
effects of current and magnetism 5. Magnetism and matter	magnetic field	processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	magnet and identifies the features of a magnetic field due to the bar magnet	and describes the nature of the magnetic field around it in terms of magnetic field lines and lists its various features
		LO2. Differentiates between certain physical quantities		C54.Compares the nature of magnetic field line patterns due to a bar magnet and a current-carrying solenoid with an electric field line pattern due to an electric dipole and draws the points of similarities and differences between the patterns and the field sources
		LO5. Derives formulae and equations		C55.Derives the formula of the magnetic field due to a bar magnet and identifies pole strength of each of the two poles of a bar magnet
III. Magnetic effects of current and magnetism 5. Magnetism and matter	Magnetic dipole and its interaction with external magnetic field	LO5. Derives formulae and equations	CLO29.Defines a magnetic dipole and describes its interaction with the external magnetic field when placed parallel, anti-parallel or any	C56.Proves that a magnetic dipole executes a simple harmonic motion when placed parallel to an external magnetic field and disturbed slightly and derives the

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
			other angle	formulae for its time period, angular frequency and potential energy
		LO2. Differentiates between certain physical quantities		C57.Compares magnetic dipole with an electric dipole as an electrostatic analogue and derives the formula for the magnetic field due to magnetic dipole along its axial line and equatorial line
	Magnetism and Gauss's law	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis LO2. Differentiates between certain physical quantities	CLO30.States and explains Gauss's law of magnetism	C58.States Gauss's law for magnetism along with its formula for magnetic flux through a closed surface and compares with Gauss's law of electrostatics
	Magnetisati on, magnetic intensities and		CLO31.Defines magnetisation, magnetic intensity and magnetic susceptibility and	C59.Defines magnetisation, magnetic intensity and magnetisation susceptibility due to magnetic materials and states each of the formulae, dimensions and their units
	magnetic properties of materials		differentiates different types of magnetic materials basis these properties	C60.Defines and differentiates the three types of magnetic materials: paramagnetic, ferromagnetic and diamagnetic basis their behaviour when placed in an

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				external magnetic field and their values of each of magnetisations, magnetic intensities and magnetic susceptibility
IV. Electromagnetic induction and alternating currents 6. Electromagnetic induction	Faraday's laws of	LO12. Takes initiative to learn about the newer research, discoveries and inventions in Physics	CLO32.Takes the initiative to explore the historical CLO32.Takes the initiative to explore the historical	C61.Describes the historical experiments of Faraday and Henry, states Faraday's two laws of induction, defines magnetic flux in terms of magnetic field and area and states the equation of induced emf in a coil in terms of rate of change in magnetic flux linked with it
	LO6. Analyses and interprets data, graphs, and figures, and draws conclusion	Henry and states Faraday's two laws of induction	C62.Recognises the importance of Lenz's law in identifying the direction of induced emf across a coil due to the change in magnetic flux linked with it and appreciates Lenz's law as a subsequence of the law of conservation of energy	
	Motional emf	LO5. Derives formulae and equations	CLO33.Explains the concept of motional emf induced across a conductor moving through a magnetic field with a velocity and undergoes	C63.Derives an equation for motional emf induced across a conductor moving with a velocity v by applying the definition of magnetic flux and

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
			change in the magnetic flux linked with it as a function of time	Faraday's law of induction
IV. Electromagnetic induction and alternating	Motional emf	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis		C64.Explains that the induction of motional emf through a moving conductor in the magnetic field is consistent with the law of conservation of energy and derives the formulae for induced current in the conductor, the force acting on the conductor due to magnetic field and power dissipated in order to produce the motional emf
currents 6. Electromagnetic induction		LO11. Applies concepts of Physics in daily life with reasoning while decision- making and solving problems		C65.Apply the concept of motional emf and Faraday's laws to understand the formation of eddy currents in the metal plates moving through a magnetic field and identifies advantages, disadvantages of eddy currents and methods to reduce them
	Inductance	LO4. Explains processes,	CLO34.Explains inductance as property of the coil	C66.Defines inductance as a property of coil that depends

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	undergoing change in magnetic flux linked with it	upon its geometry and material properties and states its formula, dimensions and units
		LO5. Derives formulae and equations		C67.Defines mutual inductance of one solenoid with respect to another solenoid such that change in flux linked with one changes the flux in another and an emf is induced as per Faraday's laws of induction and derives the formula for mutual inductance and identifies the factors on which it depends upon
IV. Electromagnetic induction and alternating currents 6. Electromagnetic induction	Inductance	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO34.Explains inductance as property of the coil undergoing change in magnetic flux linked with it	C68.Identifies the induction of self-induced emf due to change in flux linked with the coil itself and defines self- inductance, its formula and dimensions and explains how the property of self- inductance of a coil plays the role of inertia in electricity
	AC generator	LO7. Handles tools	CLO35.Describes the	C69.Describes the

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		and laboratory apparatus properly; measures physical quantities using appropriate apparatus, instruments, and devices	construction and working principle of AC generator	construction and working principle of AC generator using Faraday's laws of induction, derives the equations of induced motional emf and identifies the induced motional emf as a sinusoidal function of time and angle of rotation of the coil in the magnetic field
	AC Voltage applied to a resistor	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO36.Defines alternating current and voltage and describes the behaviour of current, voltage and power dissipated across a resistor when an alternating voltage is applied	C70.Defines alternating voltage and current and expresses them in terms of time varying sinusoidal functions of time and angular frequency
IV. Electromagnetic induction and alternating currents 7. Alternating current	AC Voltage applied to a resistor	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO36.Defines alternating current and voltage and describes the behaviour of current, voltage and power dissipated across a resistor when an alternating voltage is applied	C71.Explains the variation of current through a circuit with a resistor upon applying the alternating voltage and writes the equations of applied AC voltage, time-varying current produced, and instantaneous power dissipated through the AC circuit
		LO6. Analyses and		C72.Defines rms voltage, rms

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		interprets data, graphs, and figures, and draws conclusion		current, and peak values of alternating voltages and currents and represents the alternating current and voltage through an AC circuit with resistor using phasors
	AC voltage applied	pplied LO11. Applies concepts of Physics in daily life with reasoning while decision- making and solving problems polied Dr LO5. Derives formulae and equations	CLO37.Describes the behaviour of current, voltage	C73.Applies Kirchhoff's loop rule to obtain equations of varying current and voltage in an AC circuit containing an inductor and writes the equations using sinusoidal functions and identifies the maximum values of current and voltage
	to an inductor		and power dissipated through an AC circuit containing inductor only	C74.Defines inductive reactance of an inductor, derives a formula for instantaneous power dissipated through an inductor and draws the phasor diagrams using voltage and current phasors for an AC circuit containing inductor
IV. Electromagnetic induction and alternating	AC voltage applied to a capacitor	LO11. Applies concepts of Physics in daily life with reasoning while decision- making	CLO38.Describes the behaviour of current, voltage and power dissipated through an AC circuit containing	C75.Applies Kirchhoff's loop rule to obtain equations of varying current and voltage in an AC circuit containing a capacitor and writes the

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
currents 7. Alternating current		and solving problems	capacitor only	equations using sinusoidal functions and identifies the maximum values of current and voltage
		LO5. Derives formulae and equations		C76.Defines capacitive reactance of a capacitor, derives formula for instantaneous power dissipated through a capacitor, draws the phasor diagrams using voltage and current phasors for an AC circuit containing capacitor and describes the charging and discharging of the capacitor during one AC cycle of current flowing through the circuit
	AC voltage applied across LCR series circuit	LO11. Applies concepts of Physics in daily life with reasoning while decision- making and solving problems	CLO39.Describes the AC circuit containing inductor, capacitor and resistor in series and explains the variation of current, voltage and power dissipation in the series LCR circuit	C78.Applies Kirchhoff's loop rule to obtain equations of varying current and voltage in an AC circuit containing an inductor, a capacitor and a resistor connected in series and derives the equations for instantaneous current and its phase relationship to the applied voltage using phasor diagrams and analytical methods

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		LO6. Analyses and interprets data, graphs, and figures, and draws conclusion	CLO39.Describes the AC circuit containing inductor, capacitor and resistor in series and explains the variation of current, voltage and power dissipation in the series LCR circuit	C79.Defines impedance and phase angle in a series LCR circuit and represents the phasor diagram for LCR series circuit using time-varying current and voltage phasors
IV. Electromagnetic induction and alternating currents 7. Alternating current	AC voltage applied across LCR series circuit	LO6. Analyses and interprets data, graphs, and figures, and draws conclusion		C80.Defines natural frequency, resonant frequency, the condition for attaining resonance of a series LCR circuit and describes the resonance graph (current versus angular frequency of the applied voltage), identifies the factor defining the sharpness of the resonance curve, its bandwidth and the quality factor of the series LCR circuit in resonance
	The power factor	LO5. Derives formulae and equations	CLO40.Defines instantaneous power dissipated in a series LCR circuit and identifies the power factor	C81.Defines and derives an expression for the instantaneous and the average power dissipated through a series LCR circuit, identifies the power factor in the expression and recognises the nature of the AC circuit depending upon the values of the power factor

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
	Transformers	LO12. Takes initiative to learn about the newer research, discoveries and inventions in Physics	CLO41.Describes the construction, working principle and derives the related equations of a transformer	C82.Describes the construction of a transformer, identifies its working principle based on the mutual induction, derives the equation for transformer ratio and classifies the transformers as two types: step-up and step-down transformers
V. Electromagnetic waves 8. Electromagnetic waves	Displacement and conduction	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO42.Explains the concept of displacement current produced between two	C83.Defines displacement current as current through a space due to the time-varying electric fields and compares it with the conduction current which is due to the flow of actual charge carriers
	LO5. Derives formulae and equations	it with conduction current	C84.Derives Ampere's Maxwell law and concludes upon a symmetrical form of electromagnetic induction wherein time-varying magnetic field and electric field give rise to each other	
	Electromagnetic waves	LO12. Takes initiative to learn about the newer	CLO43.Takes the initiative to understand the historical experiments conducted by	C85.Takes the initiative to describe the various experiments performed by

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		research, discoveries and inventions in Physics	Hertz, Maxwell and Bose to produce electromagnetic waves and describes the nature of the em waves	Hertz, Maxwell and Bose to generate electromagnetic waves in the lab and how these experiments led Marconi to generate and transmit electromagnetic waves over large distances
		LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO44.Describes the nature of electromagnetic waves in terms of time-varying electric and magnetic fields	C86.Identifies and describes the nature of progressive electromagnetic waves as a stream of continuously changing electric and magnetic fields
V. Electromagnetic waves 8. Electromagnetic waves	Electromagnetic waves	LO5. Derives formulae and equations	CLO44.Describes the nature of electromagnetic waves in terms of time-varying electric and magnetic fields	C87.Derives the formulae relating the peak values of electric and magnetic field values for a given em wave and derives the relation between the speed of the em waves and the electric and magnetic properties of the medium
	Electromagnetic spectrum	LO6. Analyses and interprets data, graphs, and figures, and draws	CLO45.Describes the electromagnetic spectrum, the different em waves, the order of their distribution in	C88.Describes the features of an electromagnetic spectrum, the various types of electromagnetic waves, their

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		conclusion	the em spectrum, the frequency ranges and states the applications of each of the type of em wave	frequency ranges, their placement in the spectrum and applications of each of the electromagnetic waves
VI. Optics 9. Ray optics and	Reflection of light by spherical	Flight LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis LO3. Uses International system of units (SI Units), symbols, nomenclature of physical quantities and formulations, conventions	C89.Recalls and defines the terms pole, centre of curvature, principal axis, focus and radius of curvature for spherical mirrors and derives the relationship between focal length and radius of curvature	
optical instruments	mirrors		C90.Uses the Cartesian sign convention for spherical mirrors and lenses based on the direction of incident light	
VI. Optics 9. Ray optics and optical instruments	Reflection of light by spherical mirrors	LO5. Derives formulae and equations	CLO47.Draws ray diagram to determine the position of the image of an object and derives all the equations related to spherical mirrors	C91.Draws the ray diagrams to determine the position of the image of an object and derives the mirror equation and the magnification formula for spherical mirrors
	Laws of refraction	LO4. Explains	CLO48.Knows Snell's laws of	C92.Knows Snell's laws of

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
	of light	processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	refraction and obtains the relationship among relative refractive indices of different materials	refraction and obtains the relationship between refractive indices of two materials with respect to each other
	Refractive index	LO5. Derives formulae and equations	CLO49.Explains various phenomena related to refraction and the phenomenon of total internal	C93.Derives the formula for the apparent depth of a surface due to refraction when viewed normally from above and explains natural phenomena like differences in actual and real sunset/sunrise, oval shape of the sun during sunrise/sunset, etc. due to atmospheric refraction
	Total internal reflection	LO1. Recognises the concepts of Physics related to various natural phenomena		C94.Explains the phenomenon of total internal reflection, derives the expression for a critical angle for total internal reflection for any two optical media
VI. Optics 9. Ray optics and optical instruments	Refraction at spherical surfaces	LO5. Derives formulae and equations	CLO50.Derives the relationship between object and image distances and derives lens maker's and thin	C95.Derives the relationship between object and image distances for the image formed of a point object due

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
			lens formula	to refraction between two optical media
	Refraction by thin lenses Refraction Kefraction through a prism			C96.Derives lensmaker's formula for thin lenses and thin lens formula (relationship among focal length, object distance and image distance)
				C97.Defines power of a lens and derives the expression for the power of a thin lens
				C98.Derives the expression for the focal length and magnification produced by a combination of thin lenses
			CLO51.Derives various relationships for a light ray passing through a prism	C99.Derives the expression for the refractive index of a prism in terms of the minimum angle of deviation and factors on which it depends upon
	Dispersion of light	LO1. Recognises the concepts of Physics related to various natural phenomena	CLO52.Explains the formation of rainbows and colours due to scattering of light	C100.Explains the formation of primary and secondary rainbows in terms of total internal reflection and dispersion of light and explains natural phenomena related to scattering of light, e.g. blue or reddish colours of

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				the sky or white colour of clouds
VI. Optics Microscope 9. Ray optics and optical instruments Telescope	Microscope	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO53.Explains the magnification by a microscope	C101.Explains the magnification by a single lens microscope using appropriate ray diagrams and derives the expression of magnification for a single lens microscope when image is at (a) near point and (b) infinity
		LO5. Derives		C102.Derives the expression of magnification for a compound microscope and explains the magnification by a compound microscope using appropriate ray diagrams
	Telescope	equations	CLO54.Derives the expression for the magnification by a telescope	C103.Derives the expression for the magnification by a refracting telescope with two convex lenses and explains the magnification using appropriate ray diagrams
VI. Optics 10. Waves optics	Wave theory of light	LO4. Explains processes, phenomena and laws with the understanding of	CLO55.Compares wave theory with corpuscular theory and explains geometrical optics in terms of wave optics	C104.Compares the corpuscular theory and wave theory of light with the differences in their predictions about the speed of

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		the relationship between nature and matter on scientific basis		light and explains geometrical optics as approximation of wave optics when wavelength can be considered to be negligibly small
VI. Optics 10. Waves optics	Huygens principle	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO56.States Huygens principle, explains Snell's law of refraction, law of reflection and total internal reflection	C105.States Huygens principle and uses the principle to determine new wave front for a given wave front
	Huygens principle		using the principle	C106.Derives Snell's law of refraction and laws of reflection and explains total internal reflection using Huygens principle
	Superposition of light waves	LO5. Derives formulae and equations	CLO57.States the superposition principle of waves and derives the expressions for intensity of light for interference from	C107.States the superposition principle of waves and derives the condition for constructive and destructive interference at a point away from two coherent sources of light
		coherent and incoherent light sources	C108.Derives the expression for the intensity of light at a point of due to interference	

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				from two coherent or two incoherent sources of light
	Young's double slit interference experiment	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO58.Explains the Young's double slit experiment and derives the expression for fringe width in Young's experiment	C109.Explains and derives the expression for points where constructive or destructive interference takes place in Young's experiment
	Young's double slit interference experiment	LO5. Derives formulae and equations	CLO58.Explains the Young's double slit experiment and derives the expression for fringe width in Young's experiment	C110.Derives the expression for fringe width, explains the shapes of the fringes and draws the graph to represent intensity variation in the fringes in Young's experiment
VI. Optics 10. Waves optics	Diffraction of light	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CL059.Explains what is diffraction of light waves and the pattern observed for diffraction from a single slit	C111.Explain the locations of maxima (intensity) and minima (intensity) in a single- slit diffraction pattern and distinguish them from the intensity patterns observed for double-slit interference
VII. Dual nature of radiation and	Electron emission	LO7. Handles tools and laboratory	CLO60.Describes the three significant historical	C112.Takes the initiative to understand the experiments

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
matter 11. Dual nature of radiation and matter		apparatus properly; measures physical quantities using appropriate apparatus, instruments, and devices	experiments that lead to the discovery of electrons and recognises that valence electrons can be emitted from the metal surfaces under certain conditions	performed by William Crookes that led to the observation of cathode rays, the experiment to determine the specific charge of electron by JJ Thomson and Millikan's oil drop experiment to determine the charge on electron
		LO9. Communicates the findings and conclusions		C113.Identifies three physical processes that can result in emission of electrons from a metal surface : thermionic emission, field emission and photoelectric emission
VII. Dual nature of radiation and matter 11. Dual nature of radiation and matter	Photoelectric effect	LO7. Handles tools and laboratory apparatus properly; measures physical quantities using appropriate apparatus, instruments, and devices	CLO61.Describes how photoelectric effect was first observed historically and identify the factors that leads to photoelectric emission in metals	C114.Describes Hertz's experiment that lead to the first-ever observation of emission of electrons by the metallic emitter plate under the effect of incident ultraviolet rays and explain the process of how an electron is emitted due to incident radiations
		LO9. Communicates the findings and conclusions		C115.Describes Hallwach's and Lenard's experiment to explain the dependency of photoelectric current on

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				collector plate potential, frequency and intensity of the incident radiation
	Experimental study of	LO7. Handles tools and laboratory apparatus properly; measures physical quantities using appropriate apparatus, instruments, and devices	CLO62.Describes the experimental set-up used for the study of photoelectric effect	C116.Describes the details of the experimental set-up of the photoelectric effect and its operation
	Photoelectric effect	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO63.Explains the variation of photoelectric current as a function of the intensity of incident radiation & potential difference and describes the variation of stopping potential with frequency of the incident radiation	C117.States that photoelectric current varies linearly with the intensity of incident radiation and plots the graph between photoelectric current as a function of the intensity of incident radiation
VII. Dual nature of radiation and matter 11. Dual nature of radiation and matter	Experimental study of Photoelectric effect	LO6. Analyses and interprets data, graphs, and figures, and draws conclusion	CLO63.Explains the variation of photoelectric current as a function of the intensity of incident radiation & potential difference and describes the variation of stopping potential with the frequency	C118.Describes the variation of photoelectric current with the increase in the applied potential difference between the two electrode plates and plots the graph between the two

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		LO6. Analyses and interprets data, graphs, and figures, and draws conclusion	of the incident radiation	C119.Defines stopping potential and plots the graph between photoelectric current and the potential difference applied across the plates
		LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis		C120.Recalls the wave nature of light as electromagnetic waves with energy spread in a continuum across the spread of the wave and explains how wave theory fails to explain the important experimental results of photoelectric effect
	Einstein's theory of Photoelectri c effect	LO4. Explains processes, phenomena and laws with the understanding of	CLO64.Describes the basic features of Einstein's explanation for photoelectric effect	C121.States Einstein's photoelectric equation and explains all the observations of the photoelectric effect using Einstein's photoelectric equation
	Energy quantum of radiation	the relationship between nature and matter on scientific basis	CLO65.Describes the particle nature of light basis the evidence provided by photoelectric phenomenon	C122.Defines photons as discrete quanta of energy and recognises that each photon carries energy and possesses momentum
VII. Dual nature of radiation and	de-Broglie hypothesis	LO4. Explains processes, phenomena and	CLO66.Explains the outcomes of de- Broglie's equation and describes the incorporation of	C123.States de-Broglie hypothesis of wave nature of particles and states de-Broglie

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
matter 11. Dual nature of radiation and matter		laws with the understanding of the relationship between nature and matter on scientific basis	Heisenberg uncertainty principle into matter-wave picture of particle	equation giving the formula for the wavelength of the wave associated with a mass particle
		LO5. Derives formulae and equations		C124.Defines matter waves and derives the mathematical expression for the wavelength of the wave associated with a mass particle in terms of applied accelerating potential
		LO6. Analyses and interprets data, graphs, and figures, and draws conclusion		C125.States the Heisenberg uncertainty principle and interprets the principle using the de-Broglie hypothesis and Born's probability interpretation of matter waves of mass particle
VIII. Atoms and nuclei 12. Atoms	Models of atom	LO12. Takes initiative to learn about the newer research, discoveries and inventions in Physics	CLO67.Takes the initiative to understand historical experiments related to the atomic models	C126.Describes JJ Thomson's plum pudding model of an atom and states basic features of Rutherford's model of an atom as proposed by Rutherford
		LO7. Handles tools and laboratory		C127.Studies the alpha particle scattering experiment
Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
--	----------------------------------	--	--	--
		apparatus properly; measures physical quantities using appropriate apparatus, instruments, and devices		and plots the graph between the number of scattered alpha particles versus their scattering angles
	Electron orbits	LO12. Takes initiative to learn about the newer research, discoveries and inventions in Physics	CLO68.Explains the nature of electron orbits basis Rutherford model of atom	C128.Recognises the basic features of Rutherford scattering experiment that lead to Rutherford's model of atom and derives the expression for radii of electron orbits and total energy of electrons around the nucleus of an atom
VIII. Atoms and nuclei 12. Atoms	Atomic spectra	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO69.Explains the characteristics of atomic spectra of hydrogen atom	C129.Identifies the conditions under which an atom can get excited and emit radiations of specific wavelengths and defines emission and absorption spectrum of hydrogen atom containing single electron
	Spectral series of hydrogen atom	LO4. Explains processes, phenomena and laws with the	CLO70.Takes initiative to study the details of simplest atomic spectra of hydrogen atom	C130.Defines spectral lines as sets of definite wavelengths of radiations emitted by an excited atom

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		understanding of the relationship between nature and matter on scientific basis		C131.Defines Balmer series for the hydrogen atom and identifies specific wavelengths of the spectral lines that constitute Balmer series and states their empirical formula
				C132.Defines Lyman series, Lyman formula and recognises that Lyman series of the spectrum lies in UV region
	Spectral series of	LO4. Explains processes, phenomena and laws with the	CL070.Takes initiative to study the details of simplest atomic spectra of hydrogen atom CL071.States and explains why Rutherford nuclear model failed and how Bohr model was a better model of atom	C133.Defines Pfund series, and Pfund formula and recognises that the Pfund series of the spectrum lies in infrared region
VIII. Atoms and nuclei 12. Atoms	hydrogen atom	the relationship between nature and matter on scientific basis		C134.Defines Brackett series, Brackett formula and recognises that the Brackett series of the spectrum lies in infra-red region
	Bohr model of atom	LO6. Analyses and interprets data, graphs, and figures, and draws conclusion		C135.Recognises the reason for the failure of Rutherford model of the atom that was based on the classical theory of electromagnetism
	LO5. Deriv			C136.States the postulates of

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		formulae and equations		Bohr's model of atom and derives the formula for angular momentum of electron in an nth orbit, the radius of orbiting electron and total energy of an electron in stable energy states in an atom basis the Bohr's atomic model
	Energy levels	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO72.Identifies the energy levels of single electron in the hydrogen atom as per Bohr model	C137.Defines and derives the various possible energy states of hydrogen atoms as per Bohr model of atom and defines ionisation energy of hydrogen atom
VIII. Atoms and nuclei	Line spectra of Hydrogen atom	LO5. Derives formulae and equations	CLO73.Explains line spectra of hydrogen atom basis Bohr's postulates	C138.Derives the Rydberg formula for the spectral lines of the hydrogen atom and depicts the spectral series of hydrogen atom using an energy level diagram
12. Atoms	De-Broglie Explanation of quantisation condition of Bohr	LO4. Explains processes, phenomena and laws with the understanding of	CLO74.Takes initiative to understand de-Broglie explanation of Bohr postulate of quantisation of angular	C139.Explains the stability of electron in its discrete orbit due to the formation of the resonant standing wave of definite frequency and applies

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
	model	the relationship between nature and matter on scientific basis	momentum	the de Broglie equation to prove the validity of the quantisation of angular momentum as proposed by Bohr's second postulate
		LO6. Analyses and interprets data, graphs, and figures, and draws conclusion		C140.Recognises the failure of the Bohr model to explain the atomic structure of multi- electron atoms like that of helium and relative intensities of various frequencies in the spectrum
VIII. Atoms and	Atomic masses	LO3. Uses International system of units (SI Units), symbols, nomenclature of physical quantities and formulations, conventions	CLO75.States the units for measurements of masses of sub atomic particles and	C141.Defines the atomic mass unit, and atomic number and states the weighted average of atomic masses of the isotopes of chlorine and hydrogen atoms
nuclei 13. Nuclei	and Discovery of neutron	LO3. Uses International system of units (SI Units), symbols, nomenclature of physical quantities and formulations, conventions	takes initiative to study the historical experimental approaches undertaken to identify and discover neutron	C142.Takes initiative to understand the historical experiment conducted by Chadwick that led to the discovery of neutrons and states the mass of neutron in terms of atomic mass units and the formula for the radius of the nucleus

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
	Mass energy equivalence	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis th nu LO6. Analyses and interprets data, graphs, and figures, and draws conclusion Cl in nu	CLO76.Explains the nature and type of energy that binds the nucleons inside the	C143.Defines mass defect in terms of difference in masses between nucleons and nucleus and applies Einstein's mass- energy equivalence equation to calculate the energy associated with a nucleus
VIII. Atoms and nuclei 13. Nuclei			nucleus	C144.Defines binding energy of a nucleus and binding energy per nucleon and plots the graph between binding energy per nucleon as a function of mass numbers of various atomic nuclei
	Nuclear forces		CLO77.Describes the important characteristics of nuclear forces	C145.States the important characteristics of nuclear forces and plots and analyses the graph between the potential energy of a pair of nucleons versus their distance of separation
	Nuclear fission	LO4. Explains processes, phenomena and laws with the understanding of the relationship	CLO78.Describes nuclear fission as breaking up of large nucleus into smaller nuclei	C146.Defines nuclear fission reaction with examples of Uranium-235 nucleus triggered by slow-moving neutron and derives the Q value of nuclear fission

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		between nature and matter on scientific basis		reaction of U235 as ~200 MeV per fissioning nucleus
VIII. Atoms and nuclei	Nuclear fission	LO7. Handles tools and laboratory apparatus properly; measures physical quantities using appropriate apparatus, instruments, and devices	CLO78.Describes nuclear fission as breaking up of large	C147.Describes the construction and principle of working of nuclear reactor
13. Nuclei		LO4. Explains processes, phenomena and laws with the understanding of	nucleus into smaller nuclei	C148.Defines nuclear fusion reaction with examples of fusion reactions between protons, deuterium and tritium and defines thermonuclear fusion reactions
IX. Electronic devices 14. Semiconductor	Vacuum tubes and semiconductor devices	the relationship between nature and matter on scientific basis	CLO79.Takes initiative to understand the history of development of semiconductor electronics	C149.States the working of vacuum tubes and states how solid-state semiconductor devices allows the controlled flow of electrons
materials, devices and simple circuits	Conductors, semiconductors and insulators	LO2. Differentiates between certain physical quantities	CLO80.Classifies solids as conductors, semiconductors and insulators on the basis of	C150.Classifies solids as conductors, semiconductors and insulators on the basis of the relative values of

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
			resistivities and energy bands	resistivity and on the basis of the energy bands and energy level diagrams
	Conductors, semiconductors and insulators	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis		C151.Defines and differentiates between valence and conduction energy bands of the valence electrons of the solids and explains the band theory of solids using the concept of energy gap between valence band and conduction band
IX. Electronic devices 14. Semiconductor electronics:	Intrinsic semiconductors	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO81.Explains the lattice structure and behaviour of intrinsic semiconductors	C152.Recognises the purest form of semiconductor solids as intrinsic semiconductors, defines intrinsic carrier concentration and recognises the total electric current through intrinsic semiconductors as the sum of electron and hole current
materials, devices and simple circuits	Extrinsic semiconductors		CLO82.Explains how intrinsic semiconductors can be converted into extrinsic semiconductors	C153.Explains how doping of an intrinsic semiconductor results in an extrinsic semiconductor and identifies two types of extrinsic semiconductors as n-type and p-type

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
				C154.Identifies and defines the new energy levels created due to doping in semiconductors as donor energy levels and acceptor energy levels and explains the energy band diagrams of n- type and p-type semiconductors using schematic diagrams
	pn junction		CLO83.Defines and describes pn junction as the basic building block of semiconductor devices	C155.Explains how a pn junction is produced, states how a depletion region is formed across the pn junction and explains how a potential barrier is produced across the pn junction due to diffusion of majority carriers and drifting of minority carriers across the junction
IX. Electronic devices 14. Semiconductor	Forward and reverse biased pn	LO6. Analyses and interprets data, graphs, and figures, and draws conclusion	CLO84.Extrapolates the understanding of pn junction to create a pn diode and describes its behaviour under	C156.Describes the behaviour of the pn junction diode under the application of an external forward bias and reverse bias
materials, devices and simple circuits	junction	LO7. Handles tools and laboratory apparatus properly; measures physical	the effect of forward and reverse external bias	C157.Takes the initiative to perform the experiment to study and plot the VI characteristics of pn junction

Unit and Chapter	Key Concept	NCERT Learning Outcomes	Content domain specific Learning Outcomes	Indicators
		quantities using appropriate apparatus, instruments, and devices		diode and defines threshold voltage, reverse saturation current and dynamic resistance using VI characteristic graph of pn junction diode
		LO6. Analyses and interprets data, graphs, and figures, and draws conclusion		C158.States the role of the pn junction diode in a rectifier, describes the circuit used and plots the graphs of input and output waveforms of half wave rectifier
	Rectifiers	LO4. Explains processes, phenomena and laws with the understanding of the relationship between nature and matter on scientific basis	CLO85.Explains the working of the pn junction diode as a rectifier in electronic circuits	C159.Describes the circuit used as full wave rectifier and plots the graphs of input and output waveforms of full wave rectifier

7. SAMPLE PEDAGOGICAL PROCESSES AND ASSESSMENT STRATEGIES

"The pedagogical practices should be learner centric. It is expected of a teacher to ensure an atmosphere for students to feel free to ask questions. They would promote active learning among students with a focus on reflections, connecting with the world around them, creating and constructing knowledge. The role of a teacher should be that of a facilitator who would encourage collaborative learning and development of multiple skills through the generous use of resources via diverse approaches for transacting the curriculum."

[CBSE Curriculum for classes 11-12]

NCERT higher secondary stage learning outcomes document provides a common set of pedagogical processes for each subject. Keeping these as guidelines, specific pedagogical processes and assessment strategies for a topic from one chapter each from classes 11 and 12 have been developed as suggestions and are shared in this section. These instances of pedagogical processes and assessment strategies should enable teachers to derive principles for making the alignment between learning outcomes, pedagogical practices and assessment in their classrooms and to use these for creating their lesson plans. The key principles considered while designing the pedagogical processes and assessment strategies are the following:

- 1. Keeping learner at the centre
 - Since new knowledge is built over existing knowledge, both pedagogy and assessment should focus on students' pre-requisite knowledge, skills, attitudes, and beliefs that they bring in a classroom setting.
 - Constructivist approaches to learning with the student being at the centre of the learning process as an active constructor of knowledge must be emphasized.
 - Since students effectively learn by doing, classroom processes should involve activities, analysis and discussions. Systematic experimentation as a tool to discover/verify theoretical principles must be included.
- 2. Focusing on learning outcomes
 - Learning outcomes indicate what a student will be able to do at the end of an instruction unit by precisely breaking down broad goals of Physics Education (apply reasoning to develop conceptual understanding, develop process skills and experimental, observational, manipulative, decision-making and investigatory skills, etc.) to more measurable and observable behaviour for each class.
 - Students learn better when the method of teaching, learning activities and assessment strategies are all aligned well with the learning outcomes. Pedagogical processes and assessment strategies should be aligned to both content domains and cognitive skills as mentioned in this document earlier.

- 3. Making effective use of assessments
 - Assessment should be viewed as an integral part of pedagogy and it should focus on giving timely individualized feedback to students. Quality formative assessment should be designed as it helps to modulate students' understanding of their own learning and helps teachers adapt their pedagogy based on students' actual learning.
 - Multiple modes of assessment including portfolios, project work, presentations, and written and oral assignments should be used to reflect the individual capacities of a student.
- 4. Creating a social and inclusive learning environment
 - Cooperative and peer-supported teaching-learning activities should be used to empower students to take charge of their own learning.
 - Peer assessment involving students assessing the work of their peers against set assessment criteria should be used.
 - Specific pedagogical processes should be used in the classroom that would help those students who may face learning difficulties including language, visual-spatial, or mixed processing problems.

SUGGESTED PEDAGOGICAL PROCESSES AND ASSESSMENT STRATEGIES FOR CLASS 11

Content unit: 14. Oscillations

Chapter: Simple harmonic motion

Topic: Kinematics of Simple harmonic motion

 Table 7.1 Suggested pedagogical processes and assessment strategies for Class 11

Learning outcomes	Indicators	Pedagogical processes	Assessment strategies
CL0124.	C737 Recognizes the condition that classifies an oscillatory motion as simple harmonic motion	Graphs like a sine wave or a cosine wave should be used to illustrate the periodic nature of the motion of a body. Teacher can conclude that any periodic	Given below are two graphs representing a logarithmic and an exponential function.
Explains the complete kinematics and dynamics of simple harmonic motion	C738 Identifies the displacement function of simple harmonic motion as sinusoidal	functions like a sine, a cosine function, and their linear combinations can be used to represent a periodic motion. The teacher identifies SHM as a special case of periodic motion, where the displacement of the body in a periodic motion is a continuous and sinusoidal function of time.	State reasons why neither of these functions and graphs can represent a body moving in simple harmonic motion. Exponential function Logarithmic function
	C739 Defines phase constant, time period, amplitude and angular frequency for a body in	With the help of a simple demonstration of a simple pendulum (a small metal ball tied to a long string) the variations in the	What is the phase difference between two oscillating bodies in SHM, with object 1 starting its motion from the mean position versus object 2 starting its motion from the

Learning outcomes	Indicators	Pedagogical processes	Assessment strategies
	simple harmonic motion	displacement and velocity of the bob at extreme and mean positions can be illustrated.	extreme position.
		As a classroom activity, let the students can record the data of displacement (in terms of the amplitude) versus time (in terms of fraction of the time-period, that is at 0, T/4, T/2, 3T/3 and T).	
CLO124. Explains the complete		The students can be encouraged to plot a graph (displacement versus time) to depict the nature of motion executed by an oscillating pendulum.	
kinematics and dynamics of simple harmonic motion		From the graph, identify and correlate with the various parameters associated with the oscillating pendulum, that is, time period, frequency, phase angle and amplitude.	
	C740 States the equation for the displacement of a body in simple harmonic motion in terms of phase and angular frequency	From the graphs that are plotted by the students, let the students identify the suitable sinusoidal function/equation that can be used to represent the oscillatory motion of the bob.	Students can be asked to reduce the different functions in a form that is similar to the equation of simple harmonic motion and identify the various parameters of SHM.
	C741 Plots the position- time graph of body in simple harmonic motion	The teacher can state the most suitable sinusoidal function to represent the simple harmonic	Question: From the given equations below, identify the time period, frequency, phase angle and

Learning outcomes	Indicators	Pedagogical processes	Assessment strategies
		motion of a body. From the equation of the SHM, identify different components, like amplitude, angular frequency and time period of the body in SHM.	amplitude of the body in SHM. 1. x = 4cos(1.33t+π/5) 2. x = A sin ωt + B cos ωt
		Students can be encouraged to write all the possible sinusoidal functions and their combinations that can be used to denote the simple harmonic functions.	
CLO124. Explains the complete kinematics and	C742 Compares the graphical plots of motion of two bodies in simple harmonic motion with different amplitudes	In order to understand the correlation between the graphical representation and the actual SHM of an oscillating body, the students can be encouraged to plot multiple	The students can be asked to depict the following two SHMs using sinusoidal graphs on a common scale, on a single graph. a. Amplitude A, frequency ω, time period T
dynamics of simple harmonic motion	C743 Compares the graphical plots of motion of two bodies in simple	graphs (displacement versus time) on the common scale to represent different SHMs for the comparison sake:	 b. Amplitude 2A, frequency 2ω, time period T/2
	harmonic motion with a phase difference	a. SHM 1 with amplitude A. SHM 2 with amplitude 2A.	
	C744 Compares the graphical plots of motion of two bodies in simple	b. SHM 1 with amplitude A. SHM 2 with amplitude A begins its oscillatory motion after T/4 time interval.	
	harmonic motion with different time periods	c. SHM 1 with amplitude A and time period T. SHM 2 with amplitude A and time period 2T (it oscillates	

Learning outcomes	Indicators	Pedagogical processes	Assessment strategies
CLO124. Explains the complete kinematics and dynamics of simple		slower and takes double time to complete one oscillation).	
		For each of the above cases, the teacher can do the demonstration of the oscillatory motion using the simple pendulum. It is important for the students to be able to associate the actual motion with the graphical representations.	
harmonic motion	C745 Proves mathematically that a displacement equation with combination of sine and cosine functions represent the simple harmonic motion	The teacher can take examples like the ones given below and using Trigonometric identities, express these functions in the standard format of simple harmonic function, that is, $Asin(\omega t + \varphi)$.	As an assessment strategy, the students can be asked to categorize the following functions as Periodic only OR both periodic and simple harmonic OR Non-periodic motion.
		1. $\sin\omega t + \cos\omega t$	a. sin ³ ωt
CL0124		2. sinwt – coswt	b. e(-ωt)
Explains the complete kinematics and dynamics of simple harmonic motion		The students should be encouraged to estimate the time period, amplitude and phase angle in each of the above instances.	 c. cosωt +cos2ωt d. A sin ωt + B cos2ωt e. sin2ωt
		The teacher can take another example of a function like:	
		$3. \sin^2 \omega t$	
		Using the approach similar as	

Learning outcomes	Indicators	Pedagogical processes	Assessment strategies
		previous, the students can be encouraged to conclude that functions like the above do represent periodic	
		motion but NOT a simple harmonic function.	

SUGGESTED PEDAGOGICAL PROCESSES AND ASSESSMENT STRATEGIES FOR CLASS 12

Content unit: VI. Optics

Chapter: 9. Ray optics and optical instruments

Topic: Reflection of light by spherical mirrors

Table 7.2. Suggested pedagogical processes and assessment strategies for Class 12

Learning outcomes	Indicators	Pedagogical processes	Assessment strategies
CLO92. Recalls the technical terms defined for spherical mirrors CLO93. Uses the correct sign convention for mirrors and lenses	C133. Recalls and defines the terms pole, centre of curvature, principal axis, and normal for spherical mirrors C134. Uses the Cartesian sign convention for spherical mirrors and lenses based on the direction of incident light	The terms related to the geometry of the spherical mirrors should be illustrated by cutting a hollow ball (plastic/rubber) along a plane. This would help the students visualize the terms like pole, centre and radius of curvature.	The teacher can ask students to mark these terms in a diagram for a concave mirror after defining these for a convex mirror. Teacher can ask the students to deduce from the ball activity mentioned. Will the aperture of a spherical mirror be greater, equal or smaller than twice the radius of curvature of the mirror?
CLO94. Defines focus for spherical mirrors CLO95. Derives the relationship between focal length and radius of curvature for spherical mirrors	C135. Defines principal focus, focal plane and focal length for paraxial rays for spherical mirrors C136. Derives the relationship between focal length and radius of curvature for spherical mirrors	Students should be asked to work in small groups and make a cross-section of a spherical mirror by bending an aluminium sheet along the cylindrical surface. They should use a parallel beam of bright light (obtained using a convex lens and bright lamp or using sunlight) to see how the metal foil focuses the light beam. They should be encouraged to change the radius of curvature of the foil and notice how the pattern of the reflected light changes. This would help them understand the	The discussion based on the observations from the activity with the curved aluminium sheet can start with students answering some of the following questions: Does the parallel beam of light get focused to a point? How does the pattern of the reflected light change on changing the radius of curvature of the foil? How does the pattern change if the

Learning outcomes	Indicators	Pedagogical processes	Assessment strategies
		need for the approximation of paraxial rays better for defining a focal point for spherical mirrors. The teacher should derive the relationship between focal length and radius of curvature for a convex mirror.	 incident light beam is narrowed? How does the location of the focused light change on changing the radius of curvature of the foil? The students should be asked to derive the relationship between focal length and radius of curvature for a concave mirror immediately after the teacher had shown them the derivation for the convex mirror.
CLO96. Explains the concept of an image in ray optics CLO97. Distinguishes between real and virtual images	C137. Explains an optical image as a point-to-point correspondence with the object through reflection or refraction C138. Distinguishes between real and virtual images	The students should be asked to use convex and concave lenses to look at objects through them, to try obtaining images on a wall or a sheet of paper. They should be asked to put down their observations and questions arising out of this activity.	After the discussion in the class, the students can be asked to write a note on 'how we can see virtual images even if these are not formed on a screen'.
		The whole group should discuss the observations and the questions together with the teacher. This discussion can be used by the teacher to clarify the distinction between real and virtual images, and also to explain how we see virtual images.	
CLO98. Draws ray diagram to determine the	C139. Draws the convenient incident and reflected rays to	The teacher should show how to draw the ray diagrams for one object position each for a convex and a concave mirror.	 Students should record their observations from their ray diagrams in the following format:

Learning outcomes	Indicators	Pedagogical processes	Assessment strategies
position of the image of an object	determine the position of the image of an object	Students should then be asked to draw the images of objects at other positions for both kinds of mirrors.	<object position="">: beyond C, at C, between C and F, at F, between F and mirror</object>
		The students should be asked to verify each of their recordings about images from the ray diagrams using actual	<pre><distance above="" all="" and="" for="" image="" image,="" nature="" object="" of="" positions="" relative="" size="" the=""></distance></pre>
	convex and concave mirrors, and a penc as an object.		2. What happens if you use three construction rays to draw the ray diagram for image formation in a perfectly spherical concave mirror – do they meet at a single point?
CL099. Derives the mirror equation for spherical mirrors CL0100. Derives the magnification formula for spherical mirrors	C140. Derives the mirror equation for spherical mirrors C141. Derives the magnification formula for spherical mirrors	The derivation of the mirror equation should first be attempted by the students in small groups before the teacher explains the whole derivation. This would enable students to apply their prior understanding of ray diagrams and their knowledge of high school geometry to solve a new problem.	The students should be asked to verify for themselves (as homework) if the mirror equation for concave mirrors is the same as that derived by the teacher for the convex mirrors.
CLO101. Solves problems related to image formation by spherical mirrors algebraically	C142. Uses mirror equation and magnification formula to solve problems related to image formation by spherical mirrors	The students should be asked to solve problems set in real-life contexts, e.g. checking the variation in apparent speed of an approaching vehicle as seen in the rear view mirror of a car, or the magnification obtained by the use of a concave mirror by a dentist. In such problems, the values of focal lengths or distances should be close to as found in authentic situations. Students can even be asked to choose these values in small	The students should be asked to obtain image distance and image size for 3-4 cases using both (a) mirror equation and magnification formula, and (b) scaled ray diagrams. They should compare the accuracy of the results from ray diagrams to the ones obtained algebraically.

[Learning outcomes	Indicators	Pedagogical processes	Assessment strategies
			groups for themselves and solve the problems.	

TEST PAPER BLUEPRINTS FOR CLASS 12 FINAL EXAMINATION

The test papers for the final examination for class 12 should be balanced in terms of their coverage of content domains, cognitive domains and types of questions. However, the blueprint governing the design of the test papers should not be very rigid and should provide sufficient latitude to the paper setter so that the focus while setting the paper remains on the quality of questions and the overall balance of the test paper. Keeping this in mind, the following blueprint tables have provided ranges of numbers instead of absolute numbers for some of the criteria of the test paper design.

Table 8.1. Distribution of marks across content domains

Content domain	Marks distribution
Electrostatics	16-20
Current electricity	10-20
Magnetic effects of current and magnetism	
Electromagnetic induction and alternating currents	16-20
Electromagnetic waves	16-20
Optics	10-20
Dual nature of radiation and matter	
Atoms and nuclei	16-20
Electronic devices	

Table 8.2. Distribution of marks across cognitive domains

Cognitive domain	Marks distribution
Remember	15-20
Understand	20-25
Apply	15-20
Analyse, Evaluate and Create	10-15
Total	70

Total	70
-------	----

Table 8.3. Distribution of marks across types of questions

Question type	Marks distribution
MCQs with single option or multiple options as correct answer	12-15
Very short answer questions with 1 mark	8-10
Short answer questions with 2 or 3 marks	25-30
Long answer questions (including structured questions with sub-questions) with 4 or 5 marks	20-25
Total	70

Other details of the test paper

- Maximum marks: 70
- Duration of the test (writing time): 3 hours
- Time given for reading the test paper: 15 minutes Total word count of the questions: 1600-2200 words

9. ASSESSMENT OF PRACTICAL WORK

A key component of the Physics curriculum for classes 11-12 is practical work related to the concepts and principles covered in the content domains. Along with discovering or verifying results covered in the curriculum, students are also expected to acquire and practice process skills related to science. The learning outcomes for the curriculum as listed in Chapter 5, include the following 3 learning outcomes which are especially relevant for practical work in Physics.

- LO7. Handles tools and laboratory apparatus properly; measures physical quantities using appropriate apparatus, instruments, and devices
- LO8. Plans and conducts investigations and experiments to arrive at and verify the facts, principles, phenomena, and relationship between physical quantities, or to seek answers to queries on their own
- LO9. Communicates the findings and conclusions in oral/written/ICT form that shows critical thinking.

DESIGN OF THE PRACTICAL EXAMINATION

Students are expected to conduct experiments, do practical activities and investigative projects throughout the course of 2 years, and are also required to take a practical examination at the end of each year.

Table 9.1. Distribution of marks for the practical examination

Activity	Distribution of marks
Two experiments, one from each section	7+7
Practical record [experiments and activities]	5
One activity from any section	3
Investigatory project	3
Viva on experiments, activities and project	5
Total	30

The practical record to be submitted by the students at the time of final examination has to include:

- Record of at least 12 experiments [with 6 from each section], to be performed by the student
- Record of at least 6 Activities [with 3 each from section A and section B], to be performed by the student
- Report of the project to be carried out by the student

The lists of suggested experiments, practical activities and investigative projects that students are expected to work on throughout the course are given below for both classes 11 and 12.

SUGGESTED EXPERIMENTS, PRACTICAL ACTIVITIES AND INVESTIGATIVE PROJECTS - CLASS 11

EXPERIMENTS

SECTION A

- 1. To measure diameter of a small spherical/cylindrical body and to measure internal diameter and depth of a given beaker/calorimeter using Vernier Callipers and hence find its volume
- 2. To measure diameter of a given wire and thickness of a given sheet using screw gauge
- 3. To determine volume of an irregular lamina using screw gauge
- 4. To determine radius of curvature of a given spherical surface by a spherometer
- 5. To determine the mass of two different objects using a beam balance
- 6. To find the weight of a given body using parallelogram law of vectors
- 7. Using a simple pendulum, plot its L-T² graph and use it to find the effective length of second's pendulum
- 8. To study variation of time period of a simple pendulum of a given length by taking bobs of same size but different masses and interpret the result
- 9. To study the relationship between force of limiting friction and normal reaction and to find the co- efficient of friction between a block and a horizontal surface
- 10. To find the downward force, along an inclined plane, acting on a roller due to gravitational pull of the earth and study its relationship with the angle of inclination θ by plotting graph between force and sin θ

SECTION B

- 1. To determine Young's modulus of elasticity of the material of a given wire
- 2. To find the force constant of a helical spring by plotting a graph between load and extension
- 3. To study the variation in volume with pressure for a sample of air at constant temperature by plotting graphs between P and V, and between P and 1/V
- 4. To determine the surface tension of water by capillary rise method
- 5. To determine the coefficient of viscosity of a given viscous liquid by measuring terminal velocity of a given spherical body
- 6. To study the relationship between the temperature of a hot body and time by plotting a cooling curve
- 7. To determine specific heat capacity of a given solid by method of mixtures
- 8. To study the relation between frequency and length of a given wire under constant tension using sonometer
- 9. To study the relation between the length of a given wire and tension for constant frequency using sonometer
- 10. To find the speed of sound in air at room temperature using a resonance tube by two resonance positions

PRACTICAL ACTIVITIES

SECTION A

- 1. To make a paper scale of given least count, e.g., 0.2 cm, 0.5 cm
- 2. To determine mass of a given body using a metre scale by principle of moments
- 3. To plot a graph for a given set of data, with proper choice of scales and error bars
- 4. To measure the force of limiting friction for rolling of a roller on a horizontal plane
- 5. To study the variation in range of a projectile with angle of projection
- 6. To study the conservation of energy of a ball rolling down on an inclined plane (using a double inclined plane)
- 7. To study dissipation of energy of a simple pendulum by plotting a graph between square of amplitude and time

SECTION B

- 1. To observe change of state and plot a cooling curve for molten wax
- 2. To observe and explain the effect of heating on a bi-metallic strip
- 3. To note the change in level of liquid in a container on heating and interpret the observations
- 4. To study the effect of detergent on surface tension of water by observing capillary rise
- 5. To study the factors affecting the rate of loss of heat of a liquid
- 6. To study the effect of load on depression of a suitably clamped metre scale loaded at (i) its end (ii) in the middle
- 7. To observe the decrease in pressure with increase in velocity of a fluid

SUGGESTED EXPERIMENTS, PRACTICAL ACTIVITIES AND INVESTIGATIVE PROJECTS – CLASS 12

EXPERIMENTS

SECTION A

- 1. To determine resistivity of two / three wires by plotting a graph for potential difference versus current
- 2. To find resistance of a given wire / standard resistor using metre bridge
- 3. To verify the laws of combination (series) of resistances using a metre bridge OR To verify the laws of combination (parallel) of resistances using a metre bridge
- 4. To determine resistance of a galvanometer by half-deflection method and to find its figure of merit
- 5. To convert the given galvanometer (of known resistance and figure of merit) into a voltmeter of desired range and to verify the same OR To convert the given galvanometer (of known resistance and figure of merit) into an ammeter of desired range and to verify the same
- 6. To find the frequency of AC mains with a sonometer

SECTION B

- 1. To find the value of v for different values of u in case of a concave mirror and to find the focal length
- 2. To find the focal length of a convex mirror, using a convex lens
- 3. To find the focal length of a convex lens by plotting graphs between u and v or between 1/u and 1/v
- 4. To find the focal length of a concave lens, using a convex lens
- 5. To determine angle of minimum deviation for a given prism by plotting a graph between angle of incidence and angle of deviation
- 6. To determine refractive index of a glass slab using a travelling microscope
- 7. To find refractive index of a liquid by using convex lens and plane mirror
- 8. To draw the I-V characteristic curve for a p-n junction diode in forward bias and reverse bias

PRACTICAL ACTIVITIES

SECTION A

- 1. To measure the resistance and impedance of an inductor with or without iron core
- 2. To measure resistance, voltage (AC/DC), current (AC) and check continuity of a given circuit using multimeter
- 3. To assemble a household circuit comprising three bulbs, three (on/off) switches, a fuse and a power source
- 4. To assemble the components of a given electrical circuit
- 5. To study the variation in potential drop with length of a wire for a steady current
- 6. To draw the diagram of a given open circuit comprising at least a battery, resistor/rheostat, key, ammeter and voltmeter. Mark the components that are not connected in proper order and correct the circuit and also the circuit diagram

SECTION B

1. To identify a diode, a resistor and a capacitor from a mixed collection of such items

- 2. Use of multimeter to see the unidirectional flow of current in case of a diode and check whether a given electronic component (e.g., diode) is in working order
- 3. To study effect of intensity of light (by varying distance of the source) on an LDR
- 4. To observe refraction and lateral deviation of a beam of light incident obliquely on a glass slab
- 5. To observe diffraction of light due to a thin slit
- 6. To study the nature and size of the image formed by a (i) convex lens, (ii) concave mirror, on a screen by using a candle and a screen (for different distances of the candle from the lens/mirror)
- 7. To obtain a lens combination with the specified focal length by using two lenses from the given set of lenses

INVESTIGATIVE PROJECTS

- 1. To study various factors on which the internal resistance/EMF of a cell depends
- To study the variations in current flowing in a circuit containing an LDR because of a variation in (a) the power of the incandescent lamp, used to 'illuminate' the LDR (keeping all the lamps at a fixed distance) (b) the distance of a incandescent lamp (of fixed power) used to 'illuminate' the LDR
- 3. To find the refractive indices of (a) water (b) oil (transparent) using a plane mirror, an equiconvex lens (made from a glass of known refractive index) and an adjustable object needle
- 4. To investigate the relation between the ratio of (i) output and input voltage and (ii) number of turns in the secondary coil and primary coil of a self- designed transformer
- 5. To investigate the dependence of the angle of deviation on the angle of incidence using a hollow prism filled one by one, with different transparent fluids
- 6. To estimate the charge induced on each one of the two identical Styrofoam (or pith) balls suspended in a vertical plane by making use of Coulomb's law
- 7. To study the factor on which the self-inductance of a coil depends by observing the effect of this coil, when put in series with a resistor/(bulb) in a circuit fed up by an A.C. source of adjustable frequency

10. ESSENTIAL IDEAS WITH SAMPLE QUESTIONS – GRADE 11

Chapter name	1.Units and measurement			
	Marking Rubric			
Essential Idea	Dimensional analys dimensionally inco not be exact or acc	Dimensional analysis can be employed for checking the dimensional consistency of the physical equations and realising that dimensionally incorrect equation is definitely incorrect whereas on the other hand a dimensionally correct equation may not be exact or accurate.		
Item Stem	Given dimensional formulae of $\frac{e^2}{4\pi go} = [M^1L^3T^{-2}]$; G = $[M^{-1}L^3T^{-2}]$ and c = $[M^0L^1T^{-1}]$, identify the dimensionally correct equations using these constants amongst the following.			
Correct answer	$l \propto \frac{1}{c^2} \sqrt{\frac{Ge^2}{4\pi go}}$	LHS, dimensional formula of l = [M ^o L ¹ T ^o] RHS, substituting the dimensional formulae of c, G and $\frac{e^2}{4\pi go}$, gives [L]. So LHS = RHS Dimensionally consistent equation.		
Distractor 1	$l \propto c^2 \sqrt{\frac{Ge^2}{4\pi go}}$	On substituting the dimensions on RHS, and solving for the dimensions, RHS = $[M^{\circ}L^{5}T^{-4}]$ LHS \neq RHS, so incorrect option		
Distractor 2	$l \propto \frac{1}{c^2} \sqrt{\frac{Ge^2}{4\pi go}}$	On substituting the dimensions on RHS, and solving for the dimensions, RHS = $[M^{1}L^{-2}T^{2}]$ LHS \neq RHS, so incorrect option		
Distractor 3	$l \propto \frac{G}{c^2} \sqrt{\frac{e^2}{4\pi go}}$	On substituting the dimensions on RHS, and solving for the dimensions, RHS = $[M^{-1/2}L^{5/2}T^{-1}]$		

LHS ≠ RHS, so incorrect option	

Chapter name	2. Motion in a straight line			
Essential Idea 1	Uniform and non-uniformly accelerated motion of a body along a straight line are represented using displacement–time and velocity-time graphs. On the other hand, the shapes of the motion graphs are interpreted to deduce the nature of the motion and thereby know the various kinematic variables associated with the motion.			
	A to & fro trip made by a tourist bus are recorded in the form of position-time graph as shown here	2.		
Item stem	 a. What is the average velocity (magnitude and direction) during each of the segments A, B and b. Sketch a corresponding velocity-time graph of the tourist bus. 	C as marked here?		
	Marking Rubric			
Part	Description Marks			
	a. Average velocity along A: (10-40)/1.5 = - 30/1.5 = - 20 km/hr	3		
complete	The negative sign indicates the Bus is moving opposite to reference direction.			
answer:	Average velocity along B: (20-10)/1 = 10 km/hr. The bus is moving along the reference direction.			

	Average velocity along C: $(40-20)/0.5 = 20/0.5 = 40$ km/hr. The bus is moving along the reference direction. b. The corresponding velocity-time graph of the bus: Velocity (km/hr) 40^{-} 30^{-} 20^{-} 10^{-} 10^{-} 10^{-} 20^{-} 10^{-} 10^{-} 20^{-} 10^{-} 10^{-} 20^{-} 10^{-} 10^{-} 20^{-} 10^{-} 10^{-} 20^{-} 10^{-} 10^{-} 20^{-} 10^{-} 10^{-} 20^{-} 10^{-} 10^{-} 20^{-} 10^{-} 10^{-} 20^{-} 10^{-} 10^{-} 10^{-} 20^{-} 1	
Stepwise break up	 a. The calculation of the average velocity for each segment using the formula: Average velocity = total distance travelled/total time taken. Significance of + and - sign in the average velocity value. Average velocity along segment A = -20 km/h Average velocity along segment B = 10 km/h Average velocity along segment C = 40 km/h 	0.5 mark for each calculation along with the mention of correct direction of motion
	b. Sketch of the velocity time graph for three segments of the motion of the bus.	0.5 mark for each segment of velocity time graph

Essential Idea 2	Linear eq motion of	Linear equations of motion of a uniformly accelerated body relate the 5 kinematic variables associated with the linear motion of the body, that is., displacement S, time t, initial velocity u, final velocity v and uniform acceleration, a.			
Item Stem	Suri begir covered b	Suri begins to ride his car from rest, with velocity increasing linearly with time as v = kt, where k = 2. What is the distance covered by Suri in metres within the first 5 seconds of his ride?			
Correct answer	25	k here corresponds to acceleration of Suri's car. So use S = ut + $\frac{1}{2}$ at2			
Distractor 1	2	Incorrect comparison of equation $v = kt$, with $v = d/t$			
Distractor 2	10	Incorrect use of equation v = kt, here v represents velocity and not distance.			
Distractor 3	50	Incorrect calculation using the equation $v2-u2 = 2aS$			

Chapter name	4.Motion in a plane				
Essential Idea 1	Motion in a pla perpendicular	Motion in a plane is considered as a combination of two separate simultaneous one-dimensional motions along two perpendicular directions. Equations of linear accelerated or uniform motion, apply to each of the individual motions.			
	An airplane in its ascending flight has initial components of speed and accelerations along x- and y- axis				
	ux	ax	uy	ay	
Item stem	10 m/s	20 m/s ²	8 m/s	10 m/s ²	
	Take the directions of upwards and to the right as positive.				
	a. Determine the final velocities along x- and y- axis after 5 seconds of the flight.				
	b. What is the magnitude and direction of the final velocity of the airplane after 5 seconds?				
Marking Rubric					

Part	Description	Marks		
	a. Final velocity along x- axis: $v_x = u_x + a_x t$			
	v _x = 10 + 20. 5= 110 m/s			
	Final velocity along y- axis: $v_y = u_y + a_y t$			
A possible	$v_y = 8 + 10.5 = 58 \text{ m/s}$			
complete	b. Net final velocity after 5 seconds:	4		
answer:	$v = \sqrt{\frac{v^2 + v^2}{x - y}} = \sqrt{110^2 + 58^2} \sim 124 \ m/s$			
	Direction of final velocity: $tan\theta = v_y/v_x = 58/110 = 0.52$			
	$\theta = \tan^{-1} 0.52$			
Stepwise break up	a. Calculation of final velocity along x- axis using equation of motion: $v_x = u_x + a_x t$			
	a. Calculation of final velocity along y- axis using equation of motion: $v_y = u_y + a_y t$			
	b. Calculation of final net velocity:			
	Magnitude of final velocity: using the formula:	1		
	$=\sqrt{\frac{v^2+v^2}{x-y}}$			
	b. Direction of final velocity using the formula: $tan\theta = v_y/v_x$	1		
Essential Idea 2	A projectile is a body that is either dropped from a height or projected with an initial velocity. Thereon the projectile moves freely under the			
	effect of gravity. The path followed by the projectile is parabolic and the various quantities like maximum heigl attained, horizontal range covered and the time of flight are obtained by considering its flight as a motion in tw dimensions.	nt 70		

Item Stem	A diver dives from a cliff that is 50 m high. Rocks extend horizontally to about 20 m from the foot of the cliff. What should be the minimum horizontal speed with which the diver should take off the cliff while diving to just miss hitting the rocks at the bottom? Take g = 10 m/s2		
Correct answer	20/√10 m/s	Find the time of flight in the vertical direction. t = $\theta 10 \text{ s}$ In the same time, use v = x/t for horizontal motion, where x is 10 m and t is time of flight. v = $20/\sqrt{10 \text{ m/s}}$	
Distractor 1	√10/20 m/s	Incorrect transposition of the values while calculating horizontal uniform speed.	
Distractor 2	√1000	This is final velocity along the vertical direction.	
Distractor 3	10√10	This is the speed obtained if the horizontal motion is considered accelerated under the effect of g.	

Chapter name	5. Laws of motion			
Essential Idea 1	Newton's second law gives a quantitative expression to the force and its effect on the body. When multiple forces act on the body, the net resultant force is the vector sum of these concurrent forces acting on the body. The body moves in the direction of the net force with an acceleration, governed by the equation, F = ma.			
ltem stem	Tim has to pull his injured little brother John on the ice sledge. Considering that there is unavoidable friction between the sledge and the icy surface, what should we recommend Tim to do for the easy run home:			

	Should Tim pull the sledge or push the sledge?					
	Marking Rubric					
Part	Description					
	In (a) Tim pushes the sledge with a force F. Resolving the forces, Fcos0 acts to the right. Fsin0 acts downwards.					
A possible complete	Total force pressing the sledge to the icy surface = Normal reaction on the sledge = W + Fsin θ Friction force f opposing forward force Fcos θ is μ x Normal reaction = $\mu(W + Fsin\theta)$	3				
answer:	The net force that moves the sledge forward is = $F\cos\theta - \mu(W + F\sin\theta)$ (1)					
	In (b) Tim pulls the sledge with a force F. Resolving the forces, $F\cos\theta$ acts to the right.					
	Fsinθ acts upwards.					
	Total force pressing the sledge to the icy surface = Normal reaction on the sledge = W - Fsin θ Friction force f opposing forward force Fcos θ is μ x Normal reaction = μ (W - Fsin θ)					
	The net force that moves the sledge forward is = $F\cos\theta - \mu(W - F\sin\theta)$ (2)					
	Comparing eqn (1) and (2), we see that for the same force F applied by Tim, it's the pull that will result in greater					
	effective force acting on sledge and hence the make it an easier run home!					
	In case of the push:					
Stepwise break up	Calculation of friction opposing the motion of the sledge and the net force that moves the sledge forward. Friction force = $\mu(W + Fsin\theta)$	1				
	Net forward force on the sledge = $F\cos\theta - \mu(W + F\sin\theta)$					
	In case of the pull:					
	Calculation of friction opposing the motion of the sledge and the net force that moves the sledge forward. Friction force = $\mu(W - Fsin\theta)$	1				
	Net forward force on the sledge = $F\cos\theta - \mu(W - F\sin\theta)$					

	Compare the two	o net forces and arrive at the final conclusion: Its easier to pull than to push.	1
Essential Idea 2	When net external force acting on a system of bodies is zero, the total momentum of the system is always conserved. In case of collision, in the absence of external forces, the internal forces that act on the colliding bodies bring about changes in the individual momenta of the colliding bodies, with the net total change in momentum of the colliding bodies being zero.		
	A and B are two is collisions that we	identical balls. Initially, ball A is moving to the right with velocity v and ball B is at rest. Assume ould occur in this illustration are elastic.	all the
Item Stem v B Item Stem Identify the correct statements from the following: i. A total of three collisions take place ii. The kinetic energy of the ball A and B gets interchanged after all of the collisions have taken place iii. The speeds of A and B remain unchanged after all the collisions have taken place iv. Ball A and B stick and move together after all the collisions have taken place		v A A B ect statements from the following: aree collisions take place energy of the ball A and B gets interchanged after all of the collisions have taken place of A and B remain unchanged after all the collisions have taken place B stick and move together after all the collisions have taken place	
Correct answer	Only i and iii	Ball A collides with B and B collides with wall, rebounds and collides with A again. With each being elastic and the balls being identical, the KE is conserved and speeds are exchanged. So iii are correct.	ı collision only i and
Distractor 1	Only iii and iv	Statement iv cannot be true as the sticking together of the balls occurs in a perfectly inelasti That's incorrect.	c collision.
Distractor 2	Only i and ii	Since the collisions are elastic, KE of ball A is regained as at the start whereas KE of ball B becomes 0, as at the start. So statement ii is incorrect.	
--------------	-----------------	---	
Distractor 3	Only iii and iv	Statement iii is true due to the all the collisions being elastic. Statement iv can be true if all the collisions are perfectly inelastic. Hence statement iv becomes invalid in the given case here.	

Chapter name	6. Work energy and power		
Essential Idea 1	Work energy theorem states that the total work done by an external force acting on the body is equal to total change produced in the kinetic energy of the body.		
Item stem	A 40 kg skier moving at a speed of 2 m/s begins his 50 m downward slide along an inclined slope. If the friction force of 50 N opposed his motion downwards, determine the speed of the skier at the bottom of the slope. You may take g = $10m/s_2$		
	Marking Rubric		
Part	Part Description		
A possible complete answer:	As per Work energy theorem:SolutionSolu		

	$v_2 = 7420 \ge 2/40 = \sqrt{371} \text{ m/s} = 19.2 \text{ m/s}$		
Stepwise break up	Calculation of initial kinetic energy = 80J		0.5
	Calculation of total work done on the skier = 7500 J		1
	Applying Work energy theorem to determine the fin	al kinetic energy, K _f = 7420 J	0.5
	Calculating of the final speed from final kinetic energ	gy, v = $\sqrt{371}$ m/s	1
Essential Idea 2	Forces like gravitational and electric forces are conservative; forces like friction and air resistance are non-conservative. A force is conservative when the work done by it is independent of the path chosen by the moving body and it is zero in case of a closed path. Non- conservative forces follow the rules to the contrary.		
Item Stem	Identify a correct statement that illustrates work done by conservative or non-conservative forces.		
Correct answer	Work done by gravitational force on the satellite moving along a circular path around Earth is zeroGravitational force is a conservative force. Gravitational f perpendicular to the motion of the satellite along its circu So, the work done is zero as the angle between force and displacement is 90. This is a correct statement.		al force acts rcular orbit. nd
Distractor 1	Work done by air resistance on the body can be positive or negative depending upon whether the body is slowing or speeding.Air resistance always acts opposite to the motion of the body a non-conservative force. Work done by air resistance is alw negative irrespective of whether the body is slowing or speeding.Air resistance always acts opposite to the motion of the body a non-conservative force. Work done by air resistance is alw negative irrespective of whether the body is slowing or speed This statement is incorrect.		e body. It is is always r speeding.
Distractor 2	Same work is done by kinetic frictional force on the body irrespective of the lengths of the path chosen between initial and final positionsKinetic frictional force is non-conservative, so work done dep upon the length of the path chosen. Longer the path the more work is done. This statement is incorrect.		one depends e more
Distractor 3	Gravitational force does negative work on the roller coaster moving down and positive work on the roller coaster when moving up	Ational force does negative work on the coaster moving down and positive work on ler coaster when moving up Gravitational force is a conservative force and always acts vertically downwards. So work done by it is negative if the rol coaster is moving up and positive if it is moving down. This statement is incorrect.	

Chapter name	7. Systems of particles and rotational motion		
Essential Idea 1	Angular momentum associated with a particle rotating about a fixed point is defined as moment of linear momentum. Considering a rigid body rotating about a fixed axis, angular momentum is defined in terms of its angular velocity and moment of inertia about the axis of rotation. In the absence of any external torque acting on the rotating body, the angular momentum of the rigid body moving about a fixed axis is always conserved.		
Item stem	A disc of radius R and mass M is rotating about the vertical axis passing through its centre and perpendicular to its plane with angular velocity ω. A ring of the same dimension but mass 2M is placed very gently on the rotating disc coaxially. What will be the angular velocity of the system now?		
	Marking Rubric		
Part	Description	Marks	
A possible complete answer:	Moment of inertia of disc about an axis as given here: $I = \frac{1}{2} MR_2$ Angular momentum of the disc = $I\omega = \frac{1}{2} MR^2 \omega$ When the ring is placed on the rotating disc, the total MI of the system becomes: $I' = \frac{1}{2} MR_2 + MR_2 = (3/2) MR_2$ Since there is no external torque acting on the system, angular momentum of the system is conserved, So $I'\omega' = I\omega$ $(3/2) MR_2 \omega' = \frac{1}{2} MR_2\omega$ So $\omega' = \omega 3$	2	
Stepwise break up	Determine MI and angular momentum of the disc: L = $\frac{1}{2}$ MR ₂ ω	0.5	
After the ring is placed on the disc, the MI of the system: $I' = (3/2) MR_2$		0.5	
	Applying the law of conservation of angular momentum and finding the final value of angular velocity		

	ω'=ω/3		
Essential Idea 2	The total kinetic energy of the rigid body in rolling motion is attributed to two components: kinetic energy due to linear motion and kinetic energy due to rotation about its axis. So the law of conservation of energy in the case when the body is both moving with linear speed and rotating about its axis includes the sum of the potential energy of the body, kinetic energy due to translational motion and kinetic energy		
Item Stem	A body of mass m, starting from rest, slides down the frictionless inclined slope and attains a speed v at the bottom of the slope. Another body of the same mass m, but in the shape of a disc rolls down the same slope. The linear speed of the disc at the bottom of the slope will be:		
Correct answer	$v \frac{\sqrt{2}}{3}$ Apply conservation of mechanical energy for the sliding body: PE = KE (linear) h = v2/2g Apply conservation of mechanical energy for the rolling disc: PE = KE (linear) + KE (rotational) mgh = $\frac{1}{2}$ mv 2 + $\frac{1}{2}$ I ω 2 1 Substituting for h, I of disc and v1= r ω v1 = v $\sqrt{2}$ 3		
Distractor 1	$v\frac{\sqrt{3}}{2}$	$v\frac{\sqrt{3}}{2}$ Incorrect transposition while solving the last equation	
Distractor 2	$\frac{v}{\sqrt{2}}$	Using incorrect value of MI of the disc	
Distractor 3	v	Not considering the rotational kinetic energy of the disc while applying the conservation of mechanical energy for disc	

Chapter name	8. Gravitation		
Essential Idea 1	Taking Earth's surface as a reference point of gravitational potential energy, when a body is thrown from the surface of Earth, the law of conservation of energy implies that its kinetic energy keeps getting converted to potential energy as it rises up. If the height to which the body rises above the surface of Earth is comparable to the radius ($h \sim R$) of Earth, then variation of g with height must be considered. The value of g no longer stays constant over such great heights ($h >> R$) from the surface of the Earth.		
ltem stem	If a body of mass m is projected vertically upwards from the surface of Earth with a speed v = 0.5ve, where ve is the escape velocity of Earth, show that the maximum height to which the body may rise from the surface of Earth is R/3. Here R is radius of Earth.		
	Marking Rubric		
Part	Description Marks		
A possible complete answer:	Conservation of energy: $\frac{1}{2}mv^2 = \frac{mgh}{1+\frac{h}{R}}$, here g has been taken as a function of h Here v = 0.5v _e and v _e = $\sqrt{2gR}$ Substituting and transposing h = R/3		
Stepwise break up	Applying conservation of energy to the body thrown from the surface and considering the variation of g with height $\frac{1}{2} mv^2 = \frac{mgh}{1+R}$		
	Substituting for the value of escape speed in terms of R and calculating the height h h = $R/3$		
Essential Idea 2	Kepler's law of periods states that square the time period of planet revolving around the Sun is directly proportional to cube of average radius of its orbit. This relationship is derived from the fact that the gravitational force of attraction between any two bodies follows inverse square law and provides the required centripetal force for the planet to revolve		

	around the sun.		
Item Stem	A planet revolves around an imaginary star under the effect of gravitational force proportional to r ^{-5/2} instead of the usual inverse square law. Suppose the planet follows a circular orbit of radius r and its time period of revolution around the star is T. How does Kepler's law of periods modify, if it does, for such an imaginary planet-star system?		
Correct answer	$T^2 \propto r^{7/2}$	Gravitational force provides for centripetal force, $\frac{mv^2}{r} = \frac{K}{r^{5/2}}$ $V^2 = \frac{K}{r^{3/2}}$ As Time period $T = \frac{2\pi r}{v}$,substituting for v, $T^2 \propto r^{7/2}$	
Distractor 1	$T^2 \propto r^3$ Kepler's law of period is independent of gravitational force being an inverse square law. This is an incorrect statement.		
Distractor 2	$T^2 \propto r^{-5/2}$	As per Kepler's law of periods, the nature of the dependence of gravitational force is the same as that of T ² . This is an incorrect statement.	
Distractor 3	$T^2 \propto r^{3/2}$	An error while transposing the power across the equations of centripetal and gravitational force. This is an incorrect statement.	

	C'B') and the strain axis. Identify the material that will absorb more energy before failing.	
	Which one of the two materials is brittle and ductile? Give one example each.	
	Marking Rubric	
Part	Description	Marks
	a. Material I had a greater modulus of elasticity. Hence it will require greater force to bring about the change in dimensions of the same measure as in II.	
A nossible	b. PE part of the graph: Between the proportionality limit and elastic limit	
complete	c. Elastic limit of yield point E	5
answer:	d. C and C'	
	e. Material I	
	Material I is ductile. Example. Steel wire (any metal) Material II is brittle. Example: Ceramic	
	a. Material I had a greater modulus of elasticity. Hence it will require greater force to bring about the change in dimensions of the same measure as in II.	
	b. PE part of the graph: Between the proportionality limit and elastic limit	0.5
Stepwise break up	c. The elastic limit of yield point E	
bi cun up	d. C and C'	
	e. Material I	0.5 mark
	Material I is ductile. Example. Steel wire (any metal) Material II is brittle. Example: Ceramic	each point
 As per Hooke's law, stress is directly proportional to strain, considering small deformations. The coproportionality in this ratio is defined as the elastic modulus of the material that is subjected to the three types of elastic moduli: Young modulus, bulk 		of ing stress. The
	modulus and shear modulus. The definition of elastic modulus depends upon the nature of the applied defo	orming force

	and the type of strain it produces in the body.		
	A rectangular block of rose jelly of dimensions as shown is acted upon by a tangential force of 0.5 N producing a relative shift of the top layer through 0.005 m with respect to the bottom layer.		
Item Stem	The shear modulus of rigidity of the	rose jelly is	
Correct answer	400 N/m2	Shear modulus = 0.5 x 0.01/[0.05 x 0.05 x 0.005] = 400 N/m2	
Distractor 1	100 N/m ²	Incorrect substitution of perpendicular distance between top and bottom layers and shear shift. This is an incorrect answer	
Distractor 2	25 x 10-2 m2/N	Incorrect definition of shear modulus as strain/stress. This is an incorrect answer	
Distractor 3	0	Since shear modulus of fluids is taken as zero, considering jelly as almost a fluid. This is incorrect answer	

Chapter name	10. Mechanical properties of fluids		
Essential Idea 1	Bernoulli's equation states that in a steady flow of a non-viscous and incompressible fluid of density \square , the pressure P, the fluid speed v and the elevation y at two points are related by $P_1 + \frac{1}{2} \frac{\rho v^2}{1} + \rho g y_1 = P_2 + \frac{1}{2} \frac{\rho v^2}{2} + \rho g y_2$ Points 1 and 2 are selected randomly, so as per the equation, it's the sum, P + ½ $\rho v^2 + \rho g y$, that stays constant at all the points of the fluid flow.		
Item stem	Tarpaulin covers the cargo that is pulled by the truck. In a stationary truck, the tarpaulin stays flat whereas it bulges out when the truck is in motion. This is primarily due to the pressure difference between the inside and outside the tarpaulin. Tarpaulin is flat Tarpaulin bulges outward Stationary If the truck is travelling at a speed of 30 m/s and the density of air is 1.3 kg/m3, how much is the pressure difference between the inside and outside of the tarpaulin?		
	Marking Rubric		
Part	Description	Marks	
A possible complete answer:	Applying Bernoulli's equation, $P_1 + \frac{1}{2} \rho_1 v^2 = P_2 + \frac{1}{22} \rho v^2$ Here P_1 and P_2 is the pressure inside and outside the tarpaulin respectively and v_1 and v_2 is the speed of the air inside and outside the tarpaulin respectively $v_1 = 0$ $P_1 - P_2 = \frac{1}{2} \rho v^2 = \frac{1}{22} x 1.3 x 30^2 = 585 Pa$		

	For correct equation statement:			
Stonuico	Applying Bernoulli's equation,			
break up	$P_1 + \frac{1}{2} \rho_1 v^2 = P_2 + \frac{1}{22} \rho v^2$			
	Here P_1 and P_2 is the pressure inside and outside the tar air inside and outside the tarpaulin respectively	Here P_1 and P_2 is the pressure inside and outside the tarpaulin respectively and v_1 and v_2 is the speed of the air inside and outside the tarpaulin respectively		
	For correct calculations and final result: v1 = 0		1	
	$P_1 - P_2 = \frac{1}{2} \rho_2 v^2 = \frac{1}{2} x 1.3 x 30^2 = 585 Pa2$		1	
Essential Idea 2	Capillarity is a phenomenon of liquids due to which if a tube of the narrow bore is immersed in it, the liquid either ascend or descends relative to surrounding liquid due to the property of surface tension. The height to which the liquid rises or falls in the capillary tube is such that force due to surface tension is balanced by the pressure difference.			
Item Stem	A liquid rises to a height of 16 cm in a capillary tube of length 20 cm. If a tube of height 12 cm is placed in the same liquid as above, which one of the following will occur?			
Correct answer	Liquid will stay at a height of 12 cm in the capillary tube Liquid will stay at a height of 12 cm in the capillary tube Liquid rise to the maximum height possible so as to ke product hr = Lr' = 2T/pg, where L is insufficient length capillary tube, r and r' is the radius of the meniscus to the liquid gets adjusted to at the top.		eep the n of the which	
Distractor 1	Liquid will emerge out as a fountainThis is not possible. This will defy the conservation o principle.		energy	
Distractor 2	Liquid will flow down the sides of the capillary tube This is not possible. Flowing down the sides will increase exposed surface area of the liquid.		ase the	
Distractor 3	Liquid will rise to a height of 8 cm only	Liquid rises to a height in a capillary tube such that the tension force is balanced by the force due to pressure difference. Hence for a given radius of the capillary tul liquid will rise to a definite height as given by $h = 2T/\rho gr$.	e surface pe, the	
	Due to the insufficient length of the capillary tube, the			

	at the edge adjusts its radius such that
	$hr = Lr' = 2T/\rho g.$

Chapter name	11. Thermal properties of gases	
Essential Idea 1	A perfect heat radiator, radiates heat at a rate as given by Stefan's law: H = eAσT4 where e is the emissivity and σ is the Stefan-Boltzmann constant. Emissivity is equal to 1 for a perfect black body radiator. For the rest all bodies, the value of e is less than 1.	
Item stem	 a. Two copper spheres of radii R1 and R2 are at temperatures T1 and T2 respectively such that R1 = 4R2 and 2T Show that heat radiated per second by sphere 1 is the same as that by sphere 2. b. Consider two copper spheres at the same temperatures such that sphere 1 is solid and sphere 2 is hollow w radius r and outer radius same as that of a solid sphere. When placed in a similar environment, one of the two s observed to cool faster. Identify the sphere that cools faster. 	T ₁ = T ₂ . with inner spheres is
	Marking Rubric	
Part	Description	Marks
A possible complete answer:	a. From Stefan's law, heat radiated per second by a body, $H_{1} = eA\sigma T^{4} = e\pi \frac{R^{2}}{1} \sigma \frac{T^{4}}{1}$ $H_{2} = eA\sigma T^{4} = e\pi \frac{R^{2}}{2} \sigma \frac{T^{4}}{2}$ $H_{1} = \frac{R^{2}T^{4}}{1} \sigma \frac{1}{16} \frac{2^{4}}{1} = 1$ $H_{2} = \frac{R^{2}T^{4}}{2} \sigma \frac{1}{16} \frac{2^{4}}{1} = 1$ $H = H2$	2

	Hence heat radiated per second by sphere 1 is same as that by sphere	
	b. From Stefan's law for rate of loss of heat per second $H_{1} = eA\sigma(T^{4} - T_{0}^{4})$ $\frac{mc\Delta T}{\Delta t} = eA\sigma(T^{4} - T_{0}^{4})$ $\frac{\Delta t}{\Delta t} = \frac{eA\sigma}{mc}(T^{4} - T_{0}^{4})$ $\frac{\Delta T}{\Delta T(s)} = \frac{m_{h}}{m_{s}}$ For same outer radius and same material of the spheres, m_{h} < m_{s} so $\Delta T/\Delta t (s) < \Delta T/\Delta t (h)$	2
	So the hollow sphere will cool faster.	
	a. For correct formulae and the ratio:	1
Stepwise break up	From Stefan's law, heat radiated per second by a body, $H_1 = eA\sigma T^4 = e\pi R_1^2 \sigma T_1^4$ $H_2 = eA\sigma T^4 = e\pi R_2^2 \sigma T_2^4$ For correct calculations and final result: $\frac{H_1}{H_2} = \frac{R_1^2 T_1^4}{R_2^2 T_2^4} = \frac{1}{16} \cdot \frac{2^4}{1} = 1$ $H = H_2$ Hence heat radiated per second by sphere 1 is same as that by sphere	1
	b. For correct modification of the Stefan formula by including the heat exchanges due to specific heat	1

	capacity:					
	From Stef	fan's law for rate of loss of heat per second.				
	$H_1 = eA\sigma$	$T(T^4 - T_0^4)$				
	$\frac{mc\Delta T}{\Delta t} = \epsilon$	$eA\sigma(T^4-T_0^4)$				
	$\frac{\Delta t}{\Delta t} = \frac{eA\sigma}{mc}$	$(T^4 - T_0^4)$	1			
	$\frac{\frac{\Delta T}{\Delta T(s)}}{\frac{\Delta T}{\Delta t(h)}} = \frac{1}{2}$	$\frac{m_h}{m_s}$				
	For substituting and final result:					
	For same outer radius and same material of the spheres, mh < ms					
	so $\Delta T / \Delta t$ (s) < $\Delta T / \Delta t$ (h)					
	So, the hollow sphere will cool faster.					
Essential Idea 2	Heat is exchanged when two substances at different temperatures are mixed. Calorimetry is the study of heat exchanges between any two substances in contact with each other. The principle of calorimetry states that heat lost by a body at a higher temperature is equal to the heat gained by the body at a lower temperature. Heat exchanged by a body is directly proportional to the mass of the body, its specific heat capacity and the temperature difference.					
Item Stem	Three liquids of equal masses, L1, L2 and L3 are at temperatures 10 °C, 20°C and 50°C. When L1 and L2 are mixed, the final temperature is 16°C and when L2 and L3 are mixed, the final temperature is 35 °C.					
	What will be the final temperature when L1 and L3 are mixed?					
		Equate heat exchanged by L1 to heat exchanged by L2 S1(16-10) = S2(20-16)				
Correct	Equate heat exchanged by L2 to heat exchanged by L3 S2(35-20) = S3(50-35)					
answer	$34 ^{\circ}\text{C}$ Equate heat exchanged by L1 to heat exchanged by L3 S1(θ -10) = S3(50- θ)					
		Solving, we get				

		$\theta = 34 \text{ oC}$
Distractor 1	30 °C	Average of temperatures of L1 and L3. This is incorrect concept.
Distractor 2	21.4 °C Incorrect substitution of temperature differences for each heat exchange. This is incorrect answer.	
Distractor 3	25 °C	Incorrect relation between specific heat capacities across the liquids while transposing the equations. This is incorrect answer.

Chapter name	12. Thermodynamics		
Essential Idea	First law of thermodynamics states that heat exchanged by a system is used for two purposes: change the interr of the system and to perform work.	nal energy	
1	It is stated as,		
	$\Delta Q = \Delta U + W$		
Item stem	For a lab experiment, a gas mixture needs to be heated to as high a temperature as possible. Is it advisable to he under constant pressure or constant volume? Give reason for your answer.	at the gas	
	Marking Rubric		
Part	Description	Marks	
	Gas should be heated under constant volume.		
A possible	As per the first law of thermodynamics:		
complete	$\Delta U = \Delta Q - W$	2	
answer:	If W = 0, whatever heat ΔQ is used to heat the gas, it is absorbed by the gas to raise its internal energy ΔU . More is the rise in internal energy of the body, higher is the rise in its temperature.		
	Since W= $p\Delta V$, at constant volume, $\Delta V = 0$, so W=0.		
Stepwise break up	Statement of the first law of thermodynamics and the reason why W=0 so that heat absorbed by the gas is used completely for the rise in internal energy.	1	
	Conclusion statement, that the gas should be heated under constant volume.	1	

Chapter name	13. Kinetic theory of gases	
Essential Idea	A gas that satisfies the equation, PV = nRT, is identified as an ideal gas. Real gases almost follow the ideal gas equ low pressures and	ation at
1	high temperatures. Ideal gas equation is used to arrive at Boyle's law and Charles law by fixing temperatures and respectively.	l volumes
Item stem	An ideal gas is enclosed in a cylinder with a movable piston as shown. The gas occupies a volume of 9 x 10-4 m3 a temperature of 300 K and pressure of 5 x 105 Pa. (Take R = 8.314 J/mol-K)	at a
	Movable piston	
	a. How many moles of the gas are contained in the cylinder?	
	b . Under what pressure can the gas be compressed isothermally to a volume of 2 x 10-4 m3 ?	
	c. Thereon the gas is heated to a temperature of 400 K at a constant volume. What will be the pressure on the	gas?
	Marking Rubric	
Part	Description	Marks
A possible	a. The number of moles of the gas contained in the cylinder:	
complete	PV = nRT	3
answer:	n = PV/RT = 5 x 105 x 9 x 10-4 / (8.314 x 300) = 0.1804 moles	

b. The process to which the gas is compressed is the smally to a volume of $2 \times 10.4 \text{ m}^2$.	
b. The pressure to which the gas is compressed isother many to a volume of 2 x 10-4 ms :	
At constant temperature,	
$P_1 V_1 = P_2 V_2$	
$5 \ge 10^5 \ge 9 \ge 10^{-4} = P_2 \ge 2 \ge 10^{-4}$	
$P_2 = 22.5 \times 10^5 m^3$	
c. Thereon the gas is heated to a temperature of 400 K at a constant volume, such that the pressure on the gas is:	
At a constant volume,	
$P_2/T_2 = P_3/T_3$	
$22.5 \times 10^5 / 300 = P_3 / 400$	
$P_3 = 30 \ge 10^5 Pa$	
a. Use of ideal gas equation. Correct equation and the final result. PV = nRT	0.5
n = PV/RT = 5 x 105 x 9 x 10-4 / (8.314 x 300) = 0.1804 moles	0.5
b. Boyle's law to be applied. Correct equations and the final result.	
At constant temperature P1 V1 = P2 V2	0.5
$5 \times 10^5 \times 9 \times 10^{-4} = P2 \times 2 \times 10^{-4}$	0.5
$P2 = 22.5 \times 10^5 m^3$	0.5
c. Chares law to be applied. Correct equation and the final result.	
	b. The pressure to which the gas is compressed isothermally to a volume of 2 x 10-4 m3 :At constant temperature, $P_1 V_1 = P_2 V_2$ $5 x 10^5 x 9 x 10^4 = P_2 x 2 x 10^4$ $P_2 = 22.5 x 10^5 m^3$ c. Thereon the gas is heated to a temperature of 400 K at a constant volume, such that the pressure on the gas is:At a constant volume, $P_2/T_2 = P_3/T_3$ $22.5 x 10^5 / 300 = P_3/400$ $P_3 = 30 x 10^5 Pa$ a. Use of ideal gas equation. Correct equation and the final result. PV = nRT $n = PV/RT = 5 x 105 x 9 x 10-4 / (8.314 x 300) = 0.1804$ molesb. Boyle's law to be applied. Correct equations and the final result.At constant temperature P1 V1 = P2 V2 $5 x 10^5 x 9 x 10^{-4} = P2 x 2 x 10^{-4}$ $P2 = 22.5 x 10^5 m^3$ c. Chares law to be applied. Correct equation and the final result.

	At a constant volume, P2/T2 = P3/T3				
	$22.5 \times 10^5 / 300 = P3/400 $				
	P3 = 3	30 x 10 ⁵ Pa			
Essential Idea 2	The a 3kT/2	The average kinetic energy of the molecules of an ideal gas is proportional to the absolute temperature of the gas. E = $3kT/2 = \frac{1}{2}m\bar{v}^2$			
	The n This e squar	The mean square speed of the molecules is directly proportional to the absolute temperature of the gas. This equation relates the macroscopic variable, the temperature of the gas with the microscopic variable, the mean square speed of the molecules.			
Item Stem	By what factor does the Kelvin temperature of the ideal gas change if the translational speed of each molecule of the gas becomes 4 times?				
Correct answer	16	Average KE per molecule of a gas $E = \frac{1}{2} m \bar{v}^2 = 3kT/2$ 16Here if v becomes 4 times, upon transposing we see that T becomes 16 times. It's the meansquare of the speed of the molecules that is directly proportional to the Kelvin temperature of the gas.			
Distractor 1	4 The speed of the molecules is directly proportional to the Kelvin temperature of the gas. This is an incorrect concept.				
Distractor 2	8 It's the mean square of the speed of the molecules and not 2 times the average speed that is directly proportional to the Kelvin temperature of the gas. This is an incorrect answer.				
Distractor 3	1 The average speed of the molecules has no dependence on the kelvin temperature. This is an incorrect statement.				

Chapter name	14. Oscillations		
Essential Idea 1	A loaded spring in vertical direction undergoes simple harmonic motion with angular frequency, $\omega = \sqrt{\frac{k}{m}}, \text{ where } \omega = 2\pi f$		
Item stem	An electronic equipment is placed on a platform supported by 4 identical vertical springs each of spring constant 1000 N/m as shown. Platform Platform Platform If the platform weighs 3 kg and the equipment weighs 5 kg, what is the frequency of vibration of the system of the springs?		
	Marking Rubric	1	
Part	Description	Marks	
A possible complete answer:	Mass supported by each spring = $(3+5)/4 = 2$ kg Frequency of vibration of each spring: $f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{1000}{2}}$ $f = 5\sqrt{5}/\pi$ Hz	2	
Stepwise break up	The weight gets divided equally across the 4 identical springs. Mass supported by each spring = $(3+5)/4 = 2$ kg	1	

	Correc	t formula and final result.	1	
	$f = \frac{1}{2\pi} \sqrt{\frac{k}{m}} = \frac{1}{2\pi} \sqrt{\frac{1000}{2}}$ $f = 5\sqrt{5/\pi} \text{ Hz}$			
Essential Idea 2	The dia particl the pha	The displacement of the object in simple harmonic motion is given as $y = A \sin(\omega t + \varphi)$, where y is the displacement of th particle at time t, A is the amplitude, ω is the angular frequency of the particle in SHM. The augment ($\omega t + \varphi$) represents the phase angle of a particle in SHM with respect to the mean position.		
Item Stem	Given phase while i	two objects in SHM along the same straight line with the same amplitude A and angular frequency ω . Wh difference between these two objects if they cross each other every time their displacement is half the an moving in opposite directions?	at is the nplitudes	
Correct answer	120	 In SHM, y = A sin (ωt+φ) = A/2 (ωt+φ) = sin-1 ½ (ωt+φ) is the phase angle is either 30 or 150 So if one object has a phase angle of 30, the second object has a phase angle of 150. The phase different between the two objects is 120 	nce	
Distractor 1	30	This is the phase angle of the first object. The phase difference is the difference in the phase angle of the objects in motion. This is incorrect.	he two	
Distractor 2	150 This is the phase angle of the second object. The phase difference is the difference in the phase angle of the tw objects in motion. This is incorrect.		of the two	
Distractor 3	0	Since they cross each other, they are at the same angular displacement with respect to mean position. incorrect.	This is	

Chapter name	15. Waves		
Essential Idea 1	Standing waves are produced in closed pipes due to the reflection and superposition of the waves. Only odd harmonics or frequencies are possible in the case of closed pipes, $f = n \frac{v}{4L}$, with n = 1, 3, 5,		
Item stem	A tuning fork of frequency 170 Hz is vibrated just above a closed cylindrical tube of length 200 cm. Water is slowly poured into the tube. What is the minimum height of the water column in the tube at which the resonance is heard in the tube? Take y = 340 m/s at room temperature.		
	Marking Rubric		
Part	Description		
A possible complete answer:	For resonance with closed pipe, $f = n \frac{v}{4L}$, with n = 1, 3, 5, $L = n \frac{v}{4f} L = 50$ n cm So the possible lengths of the air column for resonance = 50 cm, 150 cm, 250 cm, etc Length of the air column = Length of the tube – Height of the water column For the height of the water column to be minimum, the maximum possible length of the air column possible within the closed tube, that is 150 cm. So $150 = 200 - h$ h = 200 - 150 = 50 cm	3	
Stepwise break up	Correct formula and calculation of the possible length of the air column at which resonance is produced. For resonance with closed pipe, $f = n \frac{v}{4L}$, with n = 1, 3, 5,	1	

	$L = n \frac{v}{4f} = 50 \text{n cm}$			
	So possible lengths of the air	columns for resonance = 50 cm, 150 cm, 250 cm, etc		
	State the relation between Te condition. Length of the air c	ube length, air column and the water column. Identify the correct minimum olumn = Length of tube – Height of the water column	0.5	
	For the height of the water co within the closed tube, that is	olumn to be minimum, the maximum possible length of the air column possible s 150 cm.	0.5	
	Final result, So 150 = 200 – h h = 200 – 150 = 50 cm		1	
Essential Idea 2	A general wave equation for a progressive wave along a stretched string is given as: $y = A \sin 2\pi \left[\frac{t}{r} - \frac{x}{\lambda}\right]$ where A is the amplitude of the wave T is the time period of the wave λ is the wavelength of the wave along the stretched string.			
Item Stem	A vibrating stretched string is denoted by wave equation, $y = 2 \sin 2\pi \left[\frac{t}{0.01} - \frac{x}{100} \right]$, here y and x are in cm and t in seconds. Identify the incorrect statement.			
Correct answer	Wave is propagating along the negative x-axisThis is an incorrect statement. Since there is a minus sign between t and x term, the wave is progressing along + x- axis. This is the correct option.			
Distractor 1	The time period of theComparing with the equation of general wave motion, $y = A \sin 2\mathbb{Z} [t - x]$			

		$\begin{bmatrix} t & r \end{bmatrix}$
	wave is 1/100 s	$y = A \sin 2\pi \left[\frac{z}{T} - \frac{z}{\lambda}\right]$
		T = 0.01 s = 1/100 s
		So this is the correct statement.
		This is an incorrect option.
		Comparing with the equation of general wave motion,
	Wavelength of the wave is 1 m	$y = A \sin 2\pi \left[\frac{t}{T} - \frac{x}{\lambda}\right]$
Distractor 2		$\lambda = 100 \text{ cm} = 1 \text{ m}$
		So this is the correct statement.
		This is an incorrect option.
		Velocity of the wave,
Distractor 3	Velocity of the wave is	$v = v\lambda = \lambda/T = 1/0.01 = 100$ m/s So this is the correct statement.
	100 11/5	This is an incorrect option.

11. ESSENTIAL IDEAS WITH SAMPLE QUESTIONS – GRADE 12

Essential ideas and Sample questions

Chapter name	1. Electric charges and fields			
Essential Idea 1	Gauss' law states that electric flux through a closed surface is 1/2 o times the charge enclosed by that surface. This law is useful in determining the electric field due to symmetric and continuous charge distributions like an infinite line of charge or charged spherical shell, etc			
ltem stem	A long charged wire of radius a and linear charge density 🛛 is placed coaxially inside a hollow cylinder of radius b and length L. b			
	Marking Rubric			
Part	Description	Marks		
A possible complete answer:	Applying Gauss' Law to a cylindrical surface of radius r, such that $a < r < b$, the line of charge lying along its axis, $\oint E. \Delta S = \frac{q}{\epsilon_0}$ $E. 2\pi rL = \frac{\lambda L}{\epsilon_0}$ $E = \frac{\lambda L}{2\pi r \epsilon_0}$ which is the same as that due to a wire and is independent of the presence of the cylinder around the wire.			
Stepwise	Identifying Gaussian surface and applying Gauss law: 1			

break up	$\oint E. \Delta S = \frac{q}{\epsilon o}$			
	Substituting and getting the final result			
	E. $2\pi rL = \frac{\lambda L}{\epsilon o}$	E. $2\pi r L = \frac{\lambda L}{\epsilon_0}$		
	$E = \frac{\lambda}{2\pi r \in o}$			
	which is the s	came as that due to a wire and is independent of the cylinder present around the wire.		
Essential Idea 2	The mutual electrostatic force between a pair of charges is directly proportional to the product of charges and inversely proportional to the square of the distance between them. This is Coulomb's law. If multiple Coloumb's forces due to multiple charges present around it act upon a charge, then the net force on the charge is the vector sum of the individual forces. This is as per the Superposition principle of electrostatic forces.			
Item Stem	Five corners of a regular hexagon of each side a has a static charge q. There is no charge located at the 6th corner of the hexagon. The net force on a single charge –q placed at the geometric centre of the hexagon is			
Correct answer	$\frac{1}{4\pi \in_{o}} \frac{\dot{q}^{2}}{L^{2}}$	Since only 5 corners of the hexagon have charges, 4 of these diametrically opposite placed charge balance their forces, The charge –q at the centre experiences a net force due to only one charge the 5th corner. $\frac{1}{4\pi \epsilon_o} \frac{\dot{q}^2}{L^2}$ [Note that in a regular hexagon, the side of each side is also the same as the distance between the and corner/edge.]	ges placed at ne center	
Distractor 1	Zero	Forces get cancelled out due to the 5 charges placed along the 5 corners of the hexagon. This is incorrect, as not all 5 charges are diametrically opposite to each other. Force due to one charge remains non-cancelled. This is the incorrect option.		
Distractor 2	$5x \frac{1}{4\pi\epsilon_0} \frac{\dot{q^2}}{L^2}$	Force on charge at the center is 5 times the force due to each charge.		

		This is incorrect as due to the superposition principle on the Coulomb's forces, the vector addition results in only one non-cancelled force. This is the incorrect option.
Distractor 3	$\frac{1}{4\pi \epsilon_{\rm o}} \frac{\dot{q}^2}{\left(\frac{L}{2}\right)^2}$	The distance between the center of the hexagon and the corner is taken as L/2. This is incorrect as the distance is L. This is the incorrect option.

Chapter name	2. Electrostatic potential and capacitance		
Essential Idea 1	The capacitors when connected in parallel have the same potential difference and the charge on each gets distributed in inverse proportion to their capacitances. The introduction of a dielectric of dielectric constant K into a capacitor increases its capacitance K times.		
Item stem	Fig (A) represents two capacitors C and 2C connected in parallel when connected to an external battery V. Fig (B) represents two capacitors C and 2C after they are disconnected from the external battery and a dielectric dielectric constant K introduced in capacitor C. $V = \left(\begin{array}{c} q_1 \\ q_2 \\ q_1 \\ q_2 \end{array}\right) = \left(\begin{array}{c} q_2 \\ q_2 \\ q_2 \end{array}\right) = \left(\begin{array}{c} q_1 \\ q_2 \\ q_2 \end{array}\right) = \left(\begin{array}{c} q_1 \\ q_2 \\ q_2 \end{array}\right) = \left(\begin{array}{c} q_2 \\ q_2 \\ q_2 \end{array}\right) = \left(\begin{array}{c} q_1 \\ q_2 \\ q_2 \end{array}\right) = \left(\begin{array}{c} q_2 \\ q_2 \\ q_2 \end{array}\right) = \left(\begin{array}{c} q_1 \\ q_2 \\ q_2 \end{array}\right) = \left(\begin{array}{c} q_1 \\ q_2 \\ q_2 \end{array}\right) = \left(\begin{array}{c} q_2 \\ q_2 \\ q_2 \end{array}\right) = \left(\begin{array}{c} q_1 \\ q_2 \\ q_1 \end{array}\right) = \left(\begin{array}{c} q_1 \\ q_2 \\ q_2 \end{array}\right) = \left(\begin{array}{c} q_1 \\ q_1 \end{array}\right) = \left(\begin{array}{c} q_1 \\ q_1 \end{array}\right) = \left(\begin{array}{c} q_1 \\ q_2 \end{array}\right) = \left(\begin{array}{c} q_1 \\ q_1 \end{array}\right) = \left(\begin{array}{$	of	
Marking Rubric			
Part	Description	Marks	
A possible complete answer:	When connected to V, Total charge on capacitors connected in parallel, $q = q1 + q2 = CV + 2CV = 3CV$	3	

	When disconnected from V and a dielectric introduced in C,		
	Total charge $q' = q$		
	Total capacitance of the two capacitors in parallel,		
	C' = KC + 2C = (K+2)C		
	Final potential across the combination		
	$V' = \frac{q'}{C'} = \frac{3CV}{(K+2)C} = \frac{3V}{(K+2)}$		
Stepwise	Find the total charge in combination when connected to external battery.		
break up	Total charge on capacitors in parallel, $q = q1 + q2 = CV + 2CV = 3CV$	1	
	Find the total charge and capacitance in combination when connected to an external battery and with a dielectric in C.	0.5	
	Total charge q' = q	0.5	
	Total capacitance C' = KC + 2C = (K+2)C		
	Find the final potential difference across the new combination: $V' = \frac{q'}{C'} = \frac{3CV}{(K+2)C} = \frac{3V}{(K+2)}$	1	
	Electric potential, V(r) at a point is the work done in order to bring a point charge from infinity to that point in t presence of an electric field. Electrostatic potential at infinity with respect to a source charge is taken as zero. The potential at a point with position vector r from the source charge Q is	he 1e	
Essential Idea 2	$V(r) = \frac{1}{4\pi\epsilon_0} \frac{q}{r^2}$		
-	The variation of V(r) with respect to position r depends upon whether the source charge is a point charge, a dip charged conducting solid	ole, a	
	sphere, a charged insulated solid sphere, etc.		
Item Stem	Each of the graphs below represents the variation of electrostatic potential with distance in the region around a source		

	charge, that is, either a point cha Identify the most relevant V(r) v	arge or a continuous charge distribution. /s. r graph due to a uniform charged insulated sphere.
Correct answer	$r = R$ $r \rightarrow$	This is V(r) vs. r graph due to a charged insulated sphere of radius R. For points r < R, V(r) depends inversely on the radius of the sphere and also on charge distribution across the radial distance of the sphere. V(r) falls as 1/r for points beyond r > R. This is the correct option.
Distractor 1	V $r = R$ $r \rightarrow$	This is V(r) vs r graph due to a charged conducting sphere of radius R. V(r) is constant inside a conducting sphere (till r= R) and beyond r > R, the potential V(r) falls as 1/r. This is an incorrect option.
Distractor 2		This graph represents V(r) falls as 1/I. That is true for a point charge. This is the incorrect option.
Distractor 3		This is V(r) graph for an electric dipole, where r is the perpendicular distance from the center of the dipole. This is an incorrect option.

Chapter name	3. Current Electricity	
Essential Idea 1	Kirchhoff's rules help analyse electric circuits. The junction rule is based on the fact that charge cannot accumulate at any point along the circuit or a junction.	
	The voltage loop rule is based on the fact that electric potential depends upon the location in the circuit. So in a closed loop, if the start and the end of the loop is the same, the total change in potential through the loop is zero.	
Item stem	The voltmeter and the ammeter connected in the given circuit are ideal. What will be their readings in this circuit P and	t?
	Marking Rubric	
Part	Description	Marks
A possible complete answer:	The current flow through the circuit:	3

Essential Idea 2	Power dissipated by a battery source V through an external resistor R is given as V2/R. The power dissipated through a resistor depends upon how much current is drawn from the power source. If a current I flows through a resistor, the power dissipated is also given as I ² R.			
Item Stem	Power equal r	Power Ps is dissipated through a series combination and power Pp is dissipated through the parallel combination of 3 equal resistors. The ratio of Pp to Ps is		
Correct answer	9	Equivalent Rs = 3r Power dissipated by the battery of Voltage V in series combination is Ps = V ² /3r Equivalent Rp = r/3 Power dissipated by the battery of Voltage V in parallel combination is $P_p = V^2/(r/3) P_p/P_s = 9$ This is the correct option.		
Distractor 1	1/9	If the Power in each combination is taken as I^2Req , the ratio of Pp/Ps = 1/9. This is incorrect as the current through the combination is different. Hence cannot use P = I^2R_{eq} This is an incorrect option.		
Distractor 2	1	Power dissipation does not depend upon the nature of the combination of resistors. This is an incorrect option.		
Distractor 3	6	Calculation mistake while transposing or taking the ratio. This is an incorrect option.		

Chapter name	4. Moving charges and magnetism
Essential Idea	Current flowing through a pair of parallel wires exert magnetic forces on each other. If the currents are in the same direction, the two wires attract each other. If the currents are in opposite directions, the two wires repel each other. The force per unit length of the wire is given as:
1	$F = \frac{\mu_0}{2\pi} \frac{I^2}{d}$, where d is the perpendicular distance of separation between the two current-carrying wires.

Item stem	Two long wires 1 & 2, each of linear mass density of λ , carry the same current I in opposite directions. They lie in the same horizontal plane and each wire is suspended from a parallel support by means of a pair of non-stretchable strings of equal lengths I as shown. $ \begin{array}{c} $	
	Marking Rubric	
Part	Description	Marks
A possible complete answer:	Consider the length of each wire l and the distance of separation as d when the angular separation is θ. T is the tension along each string. We can draw the free body diagram of the two wires as:	3

Essential Idea 2	A particle of mass m carrying a charge q when enters a magnetic field B with speed v, executes a circular motion under the effect of magnetic force that acts perpendicular to its velocity. The magnetic force provides for the necessary centripetal force and hence its trajectory is circular in nature. The radius of this path is given as r = mv/qB.		
Item Stem	Two charged particles each carrying the same charge q, but of different masses mp and mq enter the magnetic field B with speed vp and vq respectively.		
	For the trajectories followed by P and Q as shown, which of the following conditions is true?		
Correct answer	$m_p v_p > m_q v_q$	 Radius of the trajectory followed by a moving charged particle in a magnetic field is r = mv/qB, that is, the radius of the path followed is directly proportional to the momentum (mv) of the charged particle. So more the momentum of the charged particle, the greater is the radius of the path followed. This is the correct option. 	
Distractor 1	$m_p v_p < m_q v_q$	Greater momentum implies a shorter radius of curvature. This is an incorrect option.	
Distractor 2	$m_p v_p = m_q v_q$	The radius of the path followed is independent of the momentum of the moving charged particle. This is an incorrect option.	
Distractor 3	$m_p = m_q$ and $v_p = v_q$	Identically charged particles moving with the same speeds, follow different trajectories depending upon their points of entry into the magnetic fields. This is incorrect.	

Chapter name	5. Magnetism and matter	
Essential Idea 1	The strength of the magnetic field along the equatorial line due to a magnetic dipole at a distance of the point that is much larger than the length of the dipole is twice the strength of the magnetic field at an axial point at the same distance. A magnetic field at a point due to multiple sources is added vectorially using the parallelogram law of vector addition.	
Item stem	Two identical magnetic dipoles each of magnetic dipole moment 2 Am2 are placed with their axes perpendicula other with a distance of separation being r = 2 m between them.	ar to each
	Marking Rubric	
Part	Description	Marks
A possible complete answer:	Magnetic field due to magnetic dipole 1 at point 0 (midway along r) (along the equatorial line) = $B_1 = \frac{\mu_0}{4\pi} \frac{m}{(r/2)^2}$ Magnetic field due to magnetic dipole 2 at point 0 (midway along r) (along the axial line) = $B_2 = \frac{\mu_0}{4\pi} \frac{m}{(r/2)^2}$ Net magnetic field at the point: (B1 and B2 are perpendicular to each other)	3
		1
----------	--	---
	$B = \sqrt{B_1^2 + B_2^2} = \frac{\mu_0}{4\pi} m \sqrt{5} = 2\sqrt{5} x \ 10^{-7} T$	
Stopwiso	Writing correct formula for magnetic field due to dipole along equatorial line and substituting the correct values	1
break up	Writing correct formula for magnetic field due to dipole along axial line and substituting the correct values	1
	Finding the resultant magnetic field at a point by applying vector addition rule	1

Chapter name	6. Electromagnetic induction		
Essential Idea 1	In case of a translatory motion of a conductor causing the cutting through steady magnetic field lines, results in an induced emf across the ends of the conductor. This emf generated due to the motion of the conductor in a steady field is known as motional emf, e = Blv		
Item stem	A conductor of length l moves with a constant velocity v through Earth's magnetic field. In each of the following cases, identify the component of Earth's magnetic field (BH or BV) that it will cut through and determine the induced emf generated across the conductor. a. Conductor ends point along east-west and it moves vertically downwards		
	b. Conductor ends point along north-south and it moves vertically downwards c. Conductor moves in a horizontal plane in any direction		
	Marking Rubric		
Part	Description	Marks	
A possible complete	a. Conductor pointing along east-west cuts through the horizontal component of Earth's magnetic field.	3	

answer:	Flux linked with the conductor as it moves through a vertical distance y,	
	$\varphi_{\rm H} = {\rm BHly}$	
	Induced emf	
	$e = \frac{\mathrm{d}\varphi\mathrm{H}}{\mathrm{d}\mathrm{t}} = B_H l v$	
	b. Conductor pointing along north-south will be parallel to both BH and BV, hence it will not cut through any flux lines.	
	Flux linked with conductor as it moves through a vertical distance y,	
	$\varphi = 0$	
	Induced emf	
	$e = rac{\mathrm{d} \varphi}{\mathrm{4t}} = 0$	
	c. Conductor moving in horizontal direction and moving along any direction will cut through BV only.	
	Flux linked with conductor as it moves through a vertical distance y,	
	φ V = Bvly	
	Induced emf	
	$e = rac{\mathrm{d} \varphi v}{\mathrm{d} \mathrm{t}} = B_v l v$	
Stepwise break up	Correct identification of the component of Earth's field that the conductor cuts through in each case.	0.5 each
	Calculation and the final expression for induced emf in each case.	0.5 each
Essential Idea	The changing current in coil 2 induces an emf in coil 1 that is nearby, such that the mutual inductance betwee of coils is defined as: e = M12 dI/dt	n this pair
2	The mutual inductance is the function of the dimensions and other physical parameters of the pair of coils and which the current changes in one of the them.	l the rate at

Item Stem	The coefficient of mutual inductance between a pair of coils is equal to the induced emf produced in one coil. This is possible in case,		
Correct answer	the rate of change in current in the second coil is 1 A/s	As e = M12 dI/dt If dI/dt = 1 A/s in the second coil, the mutual inductance between the two coils is equal to induced emf in the first coil. This is the correct option	
Distractor 1	the current in the second coil is 1 A	A steady current cannot induce emf in the neighbouring coil. This is an incorrect option.	
Distractor 2	the current in the second coil changes from 1 A to 2 A in 1 minute	The rate of change in current in the coil 2 = 1A/60 s = 1/60 The induced emf in coil 1 is not equal to M12. This is an incorrect option	
Distractor 3	the current in both the coils is 1 A	The current in one of the coils has to change, Or else there will be no induced emf. This is an incorrect option.	

Chapter name	7. Alternating current		
Essential Idea 1	For an AC circuit with a resistor and a capacitor, the total reactance offered to the current is given by $Z = \sqrt{R^2 + \frac{1}{(C\omega)^2}}$. where $1/C\omega$ is the capacitive reactance Xc offered by the capacitor. The current in the circuit leads the voltage by $\pi/2$.		
Item stem	A 100W, 100V bulb is to be connected to AC mains supply of 200 V, 50 Hz. Suggest a suitable capacitor that should be connected in series with the bulb so that the bulb lights up without burning out.		
	Marking Rubric		
Part	Description	Marks	
A possible complete answer:	For the bulb of the given rating, Resistance R of the bulb = V2/P = 100 x 100 / 100 = 100 ohm Maximum current that can flow through this bulb, I = P/V = 100/100 = 1 A In the RC series circuit, Total reactance offered by the RC circuit to 1 A of the current is Z = V/I = 200 / 1 = 200 ohm Also $Z = \sqrt{R^2 + \frac{1}{(C\omega)^2}}$. Substituting for Z and R and ω = 50, solving for C, we get, C = 100/ π F	3	
	Solving for the resistance and maximum current that can flow through the bulb.	0.5 mark each	
Stepwise	Finding the total impedance in the RC circuit, $Z = 200$ ohm	0.5 mark	
break up	Substituting for Z and finding C using the formula, $Z = \sqrt{R^2 + \frac{1}{(C\omega)^2}}.$	0.5 mark 1 mark	

	Calculating and finding the final result			
Essential Idea 2	In the LC circuit, at resonance, the net impedance is zero and the current is infinite. In LCR series circuit connected to AC supply, the impedance at resonance is minimum and equal to resistance of the circuit and the current in the circuit is maximum and is equal to Vo/R.			
Item Stem	In case of series LCR circuit connected to AC supply, under the resonance condition at frequency $\square = \square$ o, the inductive reactance equals capacitive reactance thereby resulting in the minimum of the net impedance and the maximum of the current in the circuit. Identify the correct pair of graphs of impedance and current as a function of frequency in the LCR series AC circuit.			
Correct answer	$ \begin{array}{c} \uparrow \\ Z \\ R \\ \hline \\ \hline$	The impedance of the circuit is minimum at resonance condition and is equal to resistance in the circuit. The current in the circuit is maximum as the impedance is minimum. Current Io = $V_0/Z = V_0/R$ = Maximum. So the second graph for current is correct. This option is correct.		
Distractor 1	$ \begin{array}{c} \uparrow \\ Z \\ R \\ \hline \\ \hline$	The impedance graph is correct. The current graph is incorrect as it depicts the current through the LCR circuit to be infinite to resonance. That's not possible in LCR series AC circuit. This is an incorrect option.		
Distractor 2	$ \begin{array}{c} \uparrow \\ Z \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ \\ $	The impedance graph shows the value of Z = 0 at resonance in series LCR circuit. That's incorrect. The current graph is correct. This is an incorrect option.		

Chapter name	8. Electromagnetic waves		
	The equation of each of the time varying electric and magnetic fields in a progressive electromagnetic wave are giver equations:	n by the	
Essential	$E = E_0 \cos\left[\frac{2\pi}{\lambda} \left(x - ct\right)\right]$		
Idea 1	$B = EB_0 \cos\left[\frac{2\pi}{\lambda} \left(x - ct\right)\right]$		
	If the em wave is travelling along x-axis, and electric field vector is along y-axis, and the magnetic field vector is aligned perpendicular to both x axis and y axis.		
	A certain electromagnetic wave travels through an empty space at a frequency of 1 GHz. The oscillating electric field peak value Eo = 50 V/m at a certain point O.	attains	
	a. What is the wavelength of the wave?		
Item stem	b. What is Bo at point O?		
	c. Write the equations for the electric and magnetic fields as a function of x and t near point O. Considering the directive wave along x- axis and the electric field vector is along y axis, include the directions in the respective wave equate and B.		
	Marking Rubric		
Part	Description	Marks	
		1	

A possible complete answer:	a. Wavelength, $\lambda = c/\nu = 3 \ge 108/109 = 0.3 \text{ m}$ b. Peak value of magnetic field $B_0 = E_0/c = 50/3 \ge 10^8 = 16.6 \ge 10^{-8} \text{ T}$ c. The wave equations for E and B: $E = E_0 \cos \left[\frac{2\pi}{\lambda} (x - ct) \right]$ $\vec{E} = 50 \cos \left[\frac{2\pi}{0.3} (x - 3 \ge 10^8 t) \right] \hat{j}$ $\vec{B} = 16.6 \ge 10^8 \cos \left[\frac{2\pi}{0.3} (x - 3 \ge 10^8 t) \right] \hat{k}$	3		
Stepwise break up	a. Calculation of wavelength using $\Box = c/v$ 0.5b. Calculation of the peak value of magnetic field0.5c. Writing the wave equation of E with the correct unit vector1Writing the wave equation of B with correct unit vector1			
Essential Idea 2	Electromagnetic waves transport both energy U and momentum p. Electric and magnetic fields carry equal amounts of energy in an em wave. When em waves strike a surface they exert pressure on it, thereby transferring momentum to the surface upon which the em waves strike. Momentum transferred to the surface is given as, p = U/c.			
Item Stem	A 70 kg astronaut stranded in space chooses to use his flashlight to move himself. If his flashlight can flash a 12 W light beam in space in a fixed direction so that he acquires momentum in the opposite direction, how much time do you think will he take to attain a speed of 2 m/s ?			
Correct answer	$3.5 \times 109 \text{ s}$ Energy radiated by flashlight in 1 second = 12 joule Momentum generated, p = U/c = 12/3 x 108 = 4 x 10-8 kgm/s Force exerted on his body every one second = p/t = 4 x 10 ⁻⁸ /1 = 4 x 10 ⁻⁸ N Using F = m(v-0)/t			

		$t = 70 \times 2 / 4 \times 10^{-8} = 35 \times 10^8 \text{ s}$ $t = 3.5 \times 10^9 \text{ s}$
Distractor		This is the correct option Equating, gain in KE to Power x time
1	11.6 s	This is incorrect concept for relativistic speeds. This is incorrect option
Distractor 2	3.8 x 10 ⁻⁸ s	Taking incorrect equation: p = Uc This is incorrect option
Distractor 3	Infinite	Considering the low power of flashlight, the astronaut will take infinite time to gain the speed of 2m/s This is incorrect option

Chapter name	9. Ray optics and optical instruments		
Essential Idea 1	Critical angle θc is the angle of incidence in the denser medium for which the angle of refraction in the rarer medium is 90°. For the angle of incidence greater than θc , the light ray is total internally reflected back into the denser medium. This is the principle that is used by reflecting prisms.		
Item stem	Red, yellow and blue lights travel together as a beam and fall on the right-angled prism. Given the refractive indices of these colours with respect to the glass of the prism as 1.41, 1.72, 2.12 respectively. Which of the colours pass through the prism and which ones get reflected back? $\underbrace{\text{Red}}_{\text{Yellow}} \underbrace{30^{\circ}}_{\text{Blue}} \underbrace{60^{\circ}}_{\text{60^{\circ}}}$		

Marking Rubric		
Part	Description	Marks
A possible complete answer:	If the incident ray is normal to side AB, then the angle of incidence on the emergent side BC as per geometry is 30°. Red A B A	3
	Identify the condition of total internal reflection for the given prism	0.5
Stepwise brook up	Find the limiting value of refractive index of colour of light that will get total internally reflected	1
51 can up	Compare the limiting value of refractive index with each of refractive indices of the three colours and	0.5 mark

	identify the colour that wi	ll pass and the colour of light that will get total internally reflected	each
Essential Idea 2	Any pair of lens when placed together makes a lens combination. The reciprocal of focal length of such a combination is given as sum of reciprocals of respective focal lengths. $\frac{1}{F} = \frac{1}{f_1} + \frac{1}{f_2}$ Lens maker formula is applied to each component lens independently. $\frac{1}{f} = (\mu - 1) \left[\frac{1}{R_1} - \frac{1}{R_2} \right]$		
Item Stem	A plano-convex lens of refractive index μ_c = 1.7 and a plano-concave lens of refractive index μ_d = 1.5, are combined as shown so as to construct a plane glass plate.		
	R μ μ μ If the radius of curvature of the curved side of both the lenses is the same, which of the following system will the glass plate function as?		
Correct answer	Convergent system with positive focal lengthLens maker formula to each lens: $ \frac{1}{f_c} = (\mu_c - 1) \left[\frac{1}{\infty} - \frac{1}{-R} \right] = \frac{\mu_c - 1}{R} $ $ \frac{1}{f_d} = (\mu_d - 1) \left[\frac{1}{-R} - \frac{1}{\infty} \right] = \frac{-(\mu_c - 1)}{R} $ For a lens combination		

		$\frac{1}{F} = \frac{1}{f_c} + \frac{1}{f_d}$ $F = \frac{R1}{\mu_c - \mu_d}$ Since $\mu_c > \mu_d$, F is positive. So the system behaves convergent. This is the correct option.
Distractor 1	Divergent system with negative focal length	Since the plano-concave lens comes as the second lens, the refracting rays out of the system diverge, hence the system behaves as divergent with negative focal length. This is an incorrect option.
Distractor 2	Plane glass slab with zero focal length	Plano-convex and a plano-concave lens combine to form a plane glass slab with zero focal length. This is an incorrect option.
Distractor 3	Plane glass slab with infinite focal length	Plano-convex and a plano-concave lens combine to form a plane glass slab with infinite focal length. This is an incorrect option.

Chapter name	10. Wave optics
Essential Idea 1	Fringe width of each of the fringes produced in Young's double slit experiment is written as $\beta = \frac{D\lambda}{d}$ Fringe width is directly proportional to the distance D between the slits and the screen and inversely proportional to the distance d between the slits.
Item stem	In Young's double slit experiment, if the screen is moved towards the slits through 2 x 10 ⁻² m the fringes become narrower by 2 x 10 ⁻⁵ m. If the distance between the slits is 10 ⁻³ m, find the wavelength of the light used in this experiment.

Marking Rubric			
Part	Description Mar		
A possible complete answer:	As fringe width is given as $\beta = \frac{D\lambda}{d}$ The changes in fringe width and distance between slits and screen can be written as: $\Delta\beta = \frac{\Delta D\lambda}{d}$ $2 \times 10^{-5} = 2 \times 10^{-2} \times \lambda/10^{-3}$ $\lambda = 10^{-6} \text{ m} = 10000 \text{ A}$		
Stepwise	Formula of fringe width and its correct form in terms of changes in D and β		
break up	Substitution and calculation of final result		
Essential Idea 2	In a single slit diffraction, the direction of central maxima is given by $D \sin\theta = n\lambda$ For the single slit diffraction, a central maxima followed by alternate dark and bright bands of equal widths on its either side on the screen, and the most suitable condition are $\lambda < d$		
Item Stem	In which of the following cases will the diffraction due to a single slit of width d due to light of wavelength \square , result in a general illumination of the screen and no distinction between dark and bright fringes are observed on the screen? (i) $\lambda << d$ (ii) $\lambda < d$ (iii) $\lambda = d$		
Correct answer	In (iii) only	When $\lambda = d$, the central maxima extends from $-\pi/2$ to $\pi/2$. So neither dark or bright b seen. Instead, a general illumination of the screen is observed. This is the correct option.	ands are

Distractor 1	In both (i) and (ii)	For $\lambda \ll d$, there is no diffraction as $\sin\theta \rightarrow \theta \rightarrow 0$, a bright image of a slit is seen on the screen. For $\lambda < d$, a diffraction pattern of central maxima with alternate dark and bright bands is seen on the screen.
		This is incorrect option.
Distractor 2	In (ii) only	For λ < d, a diffraction pattern of central maxima with alternate dark and bright bands is seen on the screen. This is an incorrect option.
Distractor 3	In both (ii) and (iii)	For $\lambda < d$, a diffraction pattern of central maxima with alternate dark and bright bands is seen on the screen. For $\lambda = d$, a general illumination of the screen is seen. This is an incorrect option.

Chapter name	11. Dual nature of radiation and matter		
Essential Idea 1	Work function of the metal surface is the minimum energy required for the electron to escape the surface. If the electron absorbs energy greater than the minimum quantum required to escape, it means that the incident photon carries energy greater than the work function of the metal and, the excess energy is retained by the emitted photoelectron as its kinetic energy. This relation is expressed as Einstein's photoelectric equation:		
	$KE_{max} = hv - \varphi_o$ $\frac{hc}{\lambda} = \varphi_o + \frac{1}{2}mv^2$		
Item stem	Lights of wavelengths 3000 <i>A</i> and 6000 <i>A</i> fall on a metallic surface and release photoelectrons with maximum speeds that are in ratio 3: 1 respectively.		
	What is the work function of the metal surface? Take $h = 6.6 \times 10^{-34}$ J.s		

Marking Rubric				
Part	Description Marks			
A possible complete answer:	From Einstein's photoelectric equation, $\frac{hc}{\lambda} = \phi_o + \frac{1}{2}mv^2$ For $\lambda_1 = 3000$ Å, $\frac{hc}{\lambda_1} = \phi_o + \frac{1}{2}m(3v)^2 = \phi_o + \frac{9}{2}mv^2 \dots (1)$ For $\lambda_2 = 6000$ Å, $\frac{hc}{\lambda_2} = \phi_o + \frac{1}{2}mv^2 \dots (2)$		2	
	Simplifying and transposing the two equations,			
Stepwise	Writing the Einstein equation and substituting the values of $\ensuremath{\mathbb{Z}} 1$ and $\ensuremath{\mathbb{Z}} 2$		1	
break up	Simplifying and solving the two equations to find the value of the work function		1	
Essential Idea 2	Matter waves are associated with all mass particles, both microscopic and macroscopic. The wavelength associated with the matter particles was given by de Broglie as $\lambda = \frac{h}{mv},$ The de Broglie wavelength associated with matter particles is inversely proportional to the mass and the speed of the particle.			
Item Stem	Matter has a dual nature, that is, it has both particle and wave properties. The wave properties of macroscopic objects are not generally observed. This is because			
Correct	The speeds are As de Broglie wavelength is associated with a particle,			

answer	too small	$\lambda = \frac{h}{mv}$, For small speeds and large masses, the value of wavelength associated with macroscopic objects
		is very small. Hence, it is not observable. This is the correct option.
Distractor 1	The dual nature applies only at the atomic scale	Matter waves are associated with all mass particles in motion, both at the microscopic and macroscopic level. This is an incorrect option.
Distractor 2	The wavelengths are too large	The de Broglie wavelengths associated with macroscopic objects are extremely small and almost non-measurable. This is incorrect option.
Distractor 3	The momenta are too small	The momentum associated with macroscopic objects is actually large compared to microscopic sub-atomic particles due to their large masses. So as the de Broglie wavelength $\propto 1/p$, it is very small and non-measurable. So this option is incorrect.

Chapter name	12. Atoms	
Essential Idea 1	As per Bohr model of the atom, the radius and speed of the electron revolving around the electron orbits depend upon the principal quantum numbers. Considering the Bohr electron orbits to be almost circular, the time period of revolution of electrons in the electron orbits can be written as $T = 2\pi r/v = 4h^3\epsilon_0^2 n^3 /me^4$.o This relation implies that the time period of revolution of an electron in the electron orbits is directly proportional to n^3 .	
Item stem	Considering the Bohr model of the atom to be valid, if the time period of revolution of an electron in the state n1 is 8 times the time period of revolution of the electron in the state n2 to which it is transitioned, find the possible values n1 and n2. Here n1 and n2 are the principal quantum numbers as per the Bohr model of the atom.	

Marking Rubric		
Part	Description	
A possible complete answer:	Speed of the electron revolving in an orbit is $\propto 1/n$ Radius of the orbit $\propto n^2$ Time period of the revolving electron in any orbit of Bohr model of atom = T = $2\pi r/v$ This implies that T $\propto n^3$ So T _{n1} /T _{n2} = $\frac{n_1^3}{n_2^3}$ = 8 (as given) So n ₁ /n ₂ = 2 n ₁ = 2 n ₂ The possible values of n1 and n2 are: n ₂ = 1, n ₁ = 2; n ₂ = 2, n ₁ = 4; n ₂ = 3, n ₁ = 6 and so on.	3
Stowwige breek	Finding the relation for time period of revolution of the electron in electron orbits as a function of principal quantum number	1
up	Substituting and finding the relation between n1 and n2	1
	Suggesting the suitable values of n1 and n2	1
Essential Idea 2	Essential Idea 2De Broglie hypothesised that electrons revolving in Bohr orbits are associated with circular standing waves of wavelength, $\lambda = h/mv$ De Broglie hypothesis was extended to all particles in motion. Matter waves are associated with all particles that are the state of motion and the wavelength of the se matter waves is inversely proportional to the mass and speed of the particle.	
Item Stem	Read the following statements carefully.	

	a only charged r	particles at rest are accompanied by matter ways	
	a. Only charged particles at rest are accompanied by matter waves		
	b. any particle in motion, whether charged or uncharged, is accompanied by matter waves		
	c. the associated wavelength with proton is shorter than that of an electron, both moving with same speed		
	d. de Broglie wavelength associated with the matter wave of a charged particle is directly proportional to the potential difference through which it is accelerated		
	Identify the corr	ect statements.	
Correct answer	b and c only	Matter waves are associated with any mass particle in motion. Hence statement b is correct. The wavelength of the matter wave is inversely proportional to the mass of the particle. Since $m_p > m_e$,	
		So $\lambda_p < \lambda_e$. Hence statement c is correct. This is the correct option.	
Distractor 1	a and b only	Not just the charged particle, but any particle that has mass and is in motion is associated with matter waves. So statement a is incorrect.	
		This option is incorrect.	
	a, b and d only	de Broglie wavelength associated with a charged particle is inversely proportional to the square root of the potential difference through which it is accelerated.	
Distractor 2		So statement d is incorrect. Statement a is also incorrect.	
		This is an incorrect option.	
	only b is correct	Statement c is also correct as the wavelength of the matter wave is inversely proportional to the mass of the particle.	
Distractor 3		Since $m_p > m_e$,	
		So $\lambda_p < \lambda_e$	
		This is an incorrect option.	

Chapter name	13. Nuclei			
Essential Idea 1	In a nuclear fusion reaction, two lighter nuclei of mass number A 🛛 10 combine to form heavier nuclei. The binding energy per nucleon of each of the fusing nuclei is lesser than the binding energy per nucleon of the product nucleus formed.			
	More binding energy per nucleon greater the stability of the nucleus, the products formed in the nuclear fusio are more stable than the reactants. The energy is released in nuclear fusion reactions and hence they are exotl reactions.	n reactions nermic		
	In the nuclear fusion reaction, two deuteron nuclei combine to form one alpha particle.			
Item stem	$^{2}_{1}H + ^{2}_{1}H \longrightarrow ^{4}_{2}He$			
	If the binding energy of deuteron is 1.15 MeV per nucleon and binding energy of the alpha particle is 7.1 MeV p nucleon, determine the energy released in the above reaction.	If the binding energy of deuteron is 1.15 MeV per nucleon and binding energy of the alpha particle is 7.1 MeV per nucleon, determine the energy released in the above reaction.		
	Marking Rubric			
Part	Description	Marks		
	Total binding energy of each deuteron nuclei = 1.15 x 2 = 2.3 MeV			
A possible complete	Total binding energy of the two fusing deuteron nuclei = $2.3 \times 2 = 4.6$ MeV Total binding energy of the product Helium nuclei formed = $7.1 \times 4 = 28.4$ MeV	2		
	The energy released in this fusion reaction: 28.4 – 4.6 = 23.8 MeV			
Stepwise break up	Calculation of the total binding energy of fusing nuclei and product nuclei	1		
	Calculation of energy released in the reaction: BE of the product – BE of reactants	1		
Essential Idea 2	The radius of the atomic nucleus is a function of the mass number A of the nucleus as			
	$R = R_0 A^{1/3}$			
	R_o is a constant and A is a mass number			
	This implies that volume of the nucleus is proportional to R ³ , where R is a function of A. This also implies that	the density		

	of the nucleus is independent of the mass number and is constant for all the nuclei of any size.	
Item Stem	Given two atomic nuclei ${}^{27}_{13}Al$ and ${}^{125}_{52}Te$ and the mass of proton M _p = 1.007u and mass of neutron M _n = 1.008u. What is the ratio of the radii of the nuclei ${}^{27}_{13}Al$ to that of ${}^{125}_{52}Te$?	
Correct answer	0.6	Radius of any atomic nucleus, $R \propto A^{1/3}$ So $R_{Al}: R_{Te} = 27^{1/3}/125^{1/3}$ $R_{Al}: R_{Te} = 3/5 = 6/10 = 0.6$ This is the correct option
Distractor 1	0.215	Radius of nucleus ☑ Sum of mass of nucleons R _{Al} : R _{Te} = [13 x 1.007 + 14 x 1.008]/[52 x 1.007 + 73 x 1.008] = 0.215 This is incorrect concept. This is an incorrect option.
Distractor 2	1.66	Incorrect calculation of the ratio RAl : RTe using the formula R $\propto A^{1/3}$ This is incorrect option
Distractor 3	0.216	If $R \propto A$, $R_{Al}: R_{Te} = 27/125 = 0.216$ This is incorrect concept. This is an incorrect option.

Chapter name	14. Semiconductor electronics: Materials, devices and simple circuits	
Essential Idea 1	A pn junction connected under forward bias condition has a total forward current as a sum of hole current and the conventional current due to electron carriers. The forward bias current is almost negligible for initial forward bias till it reaches a threshold value. Forward bias current rises steeply as soon as the forward bias exceeds the applied threshold voltage.	
Item stem	A forward-biased PN junction has a potential drop of 0.4 V across it, which is independent of the current. It can withstand a maximum current of 8 mA, beyond which it will burn out. If this diode is in series with 150 ohm of resistance, find the maximum battery voltage that should be applied when in forward bias.	
Marking Rubric		
Part	Description	Marks
A possible complete answer:	Resistance offered by the diode: $R = 0.4 / 8 \ge 10^{-3} = 50$ ohm So total resistance in the circuit = 50 + 150 = 200 ohm The maximum battery voltage allowed: $V = 8 \ge 10^{-3} \ge 200 = 1.6$ volt	2
Stepwise break up	Calculation of the resistance of the diode in forward bias	0.5
	Calculation of total resistance in circuit	0.5
	Finding the maximum battery voltage that can be applied across a forward-biased diode	1

12. REFERENCE DOCUMENTS

- 1. NCERT Draft LO document https://ncert.nic.in/pdf/publication/otherpublications/Draft_LO.pdf
- 2. NCERT Curriculum document http://cbseacademic.nic.in/curriculum 2022.html
- 3. NCERT textbooks https://ncert.nic.in/textbook.php?keip1=0-8
- 4. IB Past papers https://ibresources.org/ib-past-papers/
- 5. HKDSE Past papers https://www.hkeaa.edu.hk/en/hkdse/hkdse_subj.html?A1&1&4_25

ACKNOWLEDGEMENT

ADVISORY

• Smt. Nidhi Chhibber, IAS, Chairperson, CBSE

GUIDANCE AND SUPPORT

- Dr. Joseph Emmanuel, Director (Academics), CBSE
- Dr. Praggya M. Singh, Director, (Academics-Assessment), CBSE
- Dr. Sweta Singh, Joint Secretary (Academics), CBSE
- Mr. Manish Kumar Tyagi, Under Secretary (Academics), CBSE
- Mr. Sridhar Rajagopalan, Chief Learning Officer, Ei
- Mr. Nishchal Shukla, Vice President, Content Development & Pedagogical Research, Ei

PLANNING AND EXECUTION

- Mr. Ritesh Agarwal, Associate Vice President, Ei
- Mr. Varun Kappal, Program Director, Ei
- Ms. Manisha Upreti, Manager, Ei
- Mr. H.M Shahnawaz Khan, Associate Manager, Ei
- Mr. Muzaffar Ahmad, Education Specialist, Ei

CONTENT DEVELOPMENT TEAM

- Ms. Rashim Vaid, Ex-employee, Ei
- Mr. Avikant Bhardwaj, Ex-employee, Ei
- Mrs. Sudeshna Roy, Manager (Science), Ei

- Ms. Udita Kothari, Lead Educational Specialist, Ei
- Ms. Sudha, Consultant, Ei

REVIEWERS

• Ms. Yashu Chhabra, Sr. PGT, Head-Academics, Kulachi Hansraj School, New Delhi

Central Board of Secondary Education Shiksha Sadan, 17, Rouse Avenue, New Delhi -110002