Class: XII Session 2023-24

Additional Practice Question Paper SUBJECT: PHYSICS(THEORY) MARKING SCHEME

SN	DESCRIPTION		TOTAL
0.			MARKS
			1
A2 A3			1
Δ4	b		1
A5	~ C		1
A6	b		1
A7	С		1
A8	d		1
A9	b		1
A10	b		1
A11	b		1
A12	а		1
A13	с		1
A14	а		1
A15	b		1
A16	c		1
	SECTION B		
A17	$E = h c / \lambda = 1245 / \lambda(nm)$ in eV= 1245/400 =3.1eV 1		
	Mo will not emit as work function is more than energy incident 1		2
	OR		
	$p_{c} = p_{A} + p_{B} = h/\lambda_{A} + h/\lambda_{B} = h/\lambda_{C} \qquad 1$		
	$\lambda_{\rm C} = \lambda_{\rm A} \lambda_{\rm B} / \lambda_{\rm A} + \lambda_{\rm B}$ 1		
A18	The position of the <i>n</i> th bright fringe $r = \frac{n\lambda D}{r}$	1	
	$x = \frac{d}{d}$	I	
	$xd = (1.2 \times 10^{-2}) \times (0.28 \times 10^{-3})$		2
	$\lambda = \frac{nn}{nD} = \frac{(n-1)(n-1)(n-1)(n-1)}{4 \times 14} = 6000 \text{ A}$	1	
A19	(a) The direction of motion of the em wave is along negative Y-axis.	1 M	
	(b) Given, E = [3.1 N/C] cos [(1.8 rad/m)y + 5.4 × 10 ⁸ rad/s)t î		2
	Comparing with E = E ₀ cos [$ky + \omega t$]		-
	K = 1.8 rad/m, ω = 5.4 × 10 ⁸ rad/s and E ₀ = 3.1 N/C	1M	
	$\lambda = 2\pi/k = 3.5m$		
	$\lambda - 2 \Pi \kappa = 3.0 \Pi$		
A20	The electrical potential energy of the two identical nuclei		

	U= K (50e) (50e) / 2R = 1	2		
	= $(9 \times 10^9 \times 50 \times 1.6 \times 10^{-16} \times 50 \times 1.6 \times 10^{-16}) / \{2 \times 1.28 \times 10^{-15} \times (125)^{1/3}\}$			
	$= 4.5 \times 10^{-11} \text{ J}$ 1			
A21	E+E 2E 7			
	$I = \frac{L+L}{R+r_1+r}$ $V_1 = E - Ir_1 = E - \frac{1}{r_1+r_2+R}$ $r_1 = 0$ 1			
	$=$ $2Er_1$ $2r_1$ P_2 r_3	2		
	$E = \frac{1}{r_1 + r_2 + R}$, $1 = \frac{1}{r_1 + r_2 + R}$ $R = r_1 - r_2$ 1			
A22 0.50 V				
1122	(a) The electric field intensity is $E = V/d$, $= \frac{0.50 \text{ V}}{5.0 \times 10^{-7} \text{ m}} = 1.0 \times 10^{6} \text{ Vm}^{-1}$.			
	5W	3		
	(b) OV 1			
	(c) Rectifier 1			
A23	Applying Kirchhoff's junction rule:			
	$L_{i} = L_{i}$			
	$\mathbf{I}_1 = \mathbf{I} + \mathbf{I}_2$			
	Kirchnoff s loop rule gives:			
	$10 = 2I + 10I_1 = 2I + (10 I + I_2) $ 1M	3		
	$5 = I_2 + 6I_{}(1)$			
	$2 = 5 I_2 - 2I \dots$ (ii) 1M			
	I= $5/8A$, V= 1.25 Volt 1M			
A24	(a) The width of central maximum=2λD/d			
	When the slit width d is doubled, the width of the central maximum is			
	halved. Its area becomes one fourth and hence the intensity becomes four	3		
	times the initial intensity. 2M	-		
	(b) When red light is replaced by blue light the linear width of the central			
	maximum decreases because the wavelength of blue light is lesser than that			
	of red light. 1M			
425				
A25				
	E_{g}			
		3		
	(a) $T > 0K$ one thermally generated electron-hole pair + 9 electrons from donor atoms			

A33 (a) Expression for Average Power 3M
(b) Reason 1M
(c) Numerical 1M
(a) Average power in an a.c. circuit
Let the instantaneous values of alternating emf and current applied to an ac
circuit be given by
$$\theta = \theta_0 \sin \omega t$$

and $i = i_0 \sin (\omega t + \phi)$ where ϕ is the phase difference between A small work
done by the ac source in the circuit in the *dt* is given by
dW = $e i d t = \theta_0 i_0 \sin \omega t \sin (\omega t + \phi) dt$
The total work done by AC source in one complete cycle is

$$\int dW = \int_0^T e i dt = e_0 i_0 \int_0^T \sin \omega t \sin (\omega t + \phi) dt$$

$$= e_0 i_0 \int_0^T \cos \phi \sin^2 \omega t dt + e_0 i_0 \int_0^T \sin \phi \sin \omega t \cos \omega t dt$$

$$= \frac{e_0 i_0 \int_0^T \cos \phi \sin^2 \omega t dt + e_0 i_0 \int_0^T \sin \phi \sin \omega t \cos \omega t dt$$

$$= \frac{e_0 i_0 \int_0^T \cos \phi \sin^2 \omega t dt + e_0 i_0 \int_0^T \sin 2\omega t dt$$

$$W = \frac{e_0 i_0}{2} \frac{c_0 \delta}{\sqrt{2}} \sqrt{2} \cos \phi$$

$$\Rightarrow P_{av} = E_{RMS} \cdot I_{RMS} \cos \phi$$

$$\therefore True power = Apparent power x Power factor
(b) To transport a given power, low power factor means large current
through the transmission line, resulting in large power loss.
(c) Case-1: Given, XL = R
Power factor, P_1 = \frac{R}{\sqrt{R^2 + X_L^2}} = \frac{1}{\sqrt{2}}$$
Case-2: Given, X_L = Xc

$$Z = \sqrt{R^2 + (X_L - X_C)^2} = R$$
Power factor = $\frac{R}{Z} - \frac{R}{R} = 1$

$$\therefore \frac{P_1}{P_2} = \frac{1}{\sqrt{2}}$$

OR(a) Phasor Diagram: 1/2 MExpression for Current: 1MPhase angle: 1MCondition for Resonance : 1M(b) Proof :1.5M

An ac circuit containing an inductor, a capacitor and a resistor in series.

Let an alternating emf $e = e_0 \sin \omega t$ be applied to LCR series combination. Let *i* be the current in the circuit at any instant of time and V_R, V_L and V_C be the voltages across R, L and C respectively at that instant. Then

 $V_R = iR$, $V_L = iX_L$ and $V_C = iX_C$

Now V_R is in phase with *i*, V_L leads *i* be 90° while V_C lags behind *i* by 90°. In the phasor diagram, the vector OA is representing V_R which is in phase with *i*, the vector OB represent V_L (which leads *i* by 90°) and the vector OG is representing V_C (which lags behind *i* by 90°). If V_L > V_C then their resultant will be (V_L - V_C) which is represented by the vector OD. The vector OF is representing the resultant of V_R and (V_L - V_C). Thus,

$$e = \sqrt{V_{R}^{2} + [V_{L} - V_{C}]^{2}}$$
$$e = i\sqrt{R^{2} + (X_{L} - X_{C})^{2}}$$
$$i = \frac{e}{\sqrt{R^{2} + (X_{L} - X_{C})^{2}}}$$

Here, $\sqrt{R^2 + \left(X_L - X_C\right)^2}$ is the effective resistance or impedance of the circuit. Therefore,

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
 As $X_L = \omega L$ and $X_C = 1/\omega C$

$$\therefore \quad \mathsf{Z} = \sqrt{\mathsf{R}^2 + \left(\omega L - \frac{1}{\omega C}\right)^2}$$

The phasor diagram shows that in LCR series circuit, the applied emf *e* leads the current *i* by a phase angle ϕ , given by

$$\tan \phi = \frac{V_L - V_C}{V_R} = \frac{X_L - X_C}{R} = \frac{\omega L - 1/\omega C}{R}$$

The following 3 cases arise:

- (i) If $X_L > X_C$, then ϕ is positive. In this case the emf *e* leads the current *i*
- (ii) If $X_L < X_C$, then ϕ is negative. In this case the emf *e* lags behind the current
- (iii) If $X_L = X_C$, then $\phi = 0$. In this case the emf *e* and the current *i* are in phase and Z = R = minimum. This is the case of series resonance. Hence at resonance

$$X_{L} = X_{C}$$

$$\omega L = 1/\omega C \implies \omega = 1/\sqrt{LC}$$

$$2\pi f L = \frac{1}{2\pi f C} \implies f = \frac{1}{2\pi \sqrt{LC}}$$

Resonant linear frequency.

(b)

Given: $Z_{f_1} = Z_{f_2}$

As R is same in both cases

$$\begin{split} \mathbf{X}_{f_{1}} &= \mathbf{X}_{f_{2}} \\ &(\mathbf{X}_{L} - \mathbf{X}_{C})_{f_{1}} = (\mathbf{X}_{C} - \mathbf{X}_{L})_{f_{2}} \\ &(\mathbf{X}_{L})_{f_{1}} + (\mathbf{X}_{L})_{f_{2}} = (\mathbf{X}_{C})_{f_{2}} + (\mathbf{X}_{C})_{f_{1}} \\ &2\pi \mathbf{L}(f_{1} + f_{2}) = \frac{1}{2\pi \mathbf{C}} \left(\frac{1}{f_{1}} + \frac{1}{f_{2}}\right) \\ &2\pi \mathbf{L}(f_{1} + f_{2}) = \frac{1}{2\pi \mathbf{C}} \frac{(f_{1} + f_{2})}{f_{1}f_{2}} \\ &4\pi^{2}\mathbf{L}\mathbf{C} = \frac{1}{f_{1}f_{2}} \\ &2\pi \sqrt{\mathbf{L}\mathbf{C}} = \frac{1}{\sqrt{f_{1}f_{2}}} \\ \end{split}$$
Resonant frequency = $\frac{1}{2\pi\sqrt{\mathbf{L}\mathbf{C}}} = \sqrt{f_{1}f_{2}}$